ﻻ يوجد ملخص باللغة العربية
The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $s$-fractional capacity when $s$ goes to $1$ and the stability of our estimate with respect to the parameter $s$.
Quantitative isoperimetric inequalities for anisotropic surface energies are shown where the isoperimetric deficit controls both the Fraenkel asymmetry and a measure of the oscillation of the boundary with respect to the boundary of the corresponding Wulff shape.
We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.
In this note, we establish a strong form of the quantitive Sobolev inequality in Euclidean space for $p in (1,n)$. Given any function $u in dot W^{1,p}(mathbb{R}^n)$, the gap in the Sobolev inequality controls $| abla u - abla v|_{p}$, where $v$ is an extremal function for the Sobolev inequality.
We study a Rayleigh-Faber-Krahn inequality for regional fractional Laplacian operators. In particular, we show that there exists a compactly supported nonnegative Sobolev function $u_0$ that attains the infimum (which will be a positive real number)
The general stability problem of truncations for a family of functions concentrating mass at the origin is described and a concrete example in the framework of entire optimizers for the fractional Hardy-Sobolev inequality is given. In this short note