ﻻ يوجد ملخص باللغة العربية
Developing analysis pipelines based on statistics beyond two-point functions is critical for extracting a maximal amount of cosmological information from current and upcoming weak lensing surveys. In this paper, we study the impact of the intrinsic alignment of galaxies (IA) on three promising probes measured from aperture mass maps -- the lensing peaks, minima and full PDF, in comparison and in combination with the shear two-point correlation functions ($gamma$-2PCFs). Our two-dimensional IA infusion method converts the light-cone-projected mass sheets into projected tidal tensors, which are then linearly coupled to an intrinsic ellipticity component with a strength controlled by the coupling parameter $A_{rm IA}$. We validate our method with the $gamma$-2PCFs statistics, recovering well the analytical calculations from the linear alignment model of citet{BridleKing} in a full tomographic setting, and for different $A_{rm IA}$ values. We next use our method to infuse at the galaxy catalogue level a non-linear IA model that includes the density-weighting term introduced in citet{Blazek2015}, and compute the impact on the three aperture mass map statistics. We find that large snr peaks are maximally affected, with deviations reaching 30% (10%) for a {it Euclid}-like (KiDS-like) survey. Modelling the signal in a $w$CDM cosmology universe with $N$-body simulations, we forecast the cosmological bias caused by unmodelled IA for 100 deg$^2$ of {it Euclid}-like data, finding very large offsets in $w_0$ (5-10$sigma_{rm stat}$), $Omega_{rm m}$ (4-6$sigma_{rm stat}$), and $S_8 equiv sigma_8sqrt{Omega_{rm m}/0.3}$ ($sim$3$sigma_{rm stat}$). The method presented in this paper offers a compelling avenue to account for IA in beyond-two-point weak lensing statistics, with a flexibility comparable to that of current $gamma$-2PCFs IA analytical models.
We consider the effect of galaxy intrinsic alignments (IAs) on dark energy constraints from weak gravitational lensing. We summarise the latest version of the linear alignment model of IAs, following the brief note of Hirata & Seljak (2010) and furth
We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter $S_8equiv sigma_8sqrt{Omega
One of the most pernicious theoretical systematics facing upcoming gravitational lensing surveys is the uncertainty introduced by the effects of baryons on the power spectrum of the convergence field. One method that has been proposed to account for
Correlations of galaxy ellipticities with large-scale structure, due to galactic tidal interactions, provide a potentially significant contaminant to measurements of cosmic shear. However, these intrinsic alignments are still poorly understood for ga
We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Ad