ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmic Shear Cosmology Beyond 2-Point Statistics: A Combined Peak Count and Correlation Function Analysis of DES-Y1

138   0   0.0 ( 0 )
 نشر من قبل Joachim Harnois-Deraps
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We constrain cosmological parameters from a joint cosmic shear analysis of peak-counts and the two-point shear correlation functions, as measured from the Dark Energy Survey (DES-Y1). We find the structure growth parameter $S_8equiv sigma_8sqrt{Omega_{rm m}/0.3} = 0.766^{+0.033}_{-0.038}$, which at 4.8% precision, provides one of the tightest constraints on $S_8$ from the DES-Y1 weak lensing data. In our simulation-based method we determine the expected DES-Y1 peak-count signal for a range of cosmologies sampled in four $w$CDM parameters ($Omega_{rm m}$, $sigma_8$, $h$, $w_0$). We also determine the joint covariance matrix with over 1000 realisations at our fiducial cosmology. With mock DES-Y1 data we calibrate the impact of photometric redshift and shear calibration uncertainty on the peak-count, marginalising over these uncertainties in our cosmological analysis. Using dedicated training samples we show that our measurements are unaffected by mass resolution limits in the simulation, and that our constraints are robust against uncertainty in the effect of baryon feedback. Accurate modelling for the impact of intrinsic alignments on the tomographic peak-count remains a challenge, currently limiting our exploitation of cross-correlated peak counts between high and low redshift bins. We demonstrate that once calibrated, a fully tomographic joint peak-count and correlation functions analysis has the potential to reach a 3% precision on $S_8$ for DES-Y1. Our methodology can be adopted to model any statistic that is sensitive to the non-Gaussian information encoded in the shear field. In order to accelerate the development of these beyond-two-point cosmic shear studies, our simulations are made available to the community upon request.



قيم البحث

اقرأ أيضاً

We present a combined tomographic weak gravitational lensing analysis of the Kilo Degree Survey (KV450) and the Dark Energy Survey (DES-Y1). We homogenize the analysis of these two public cosmic shear datasets by adopting consistent priors and modeli ng of nonlinear scales, and determine new redshift distributions for DES-Y1 based on deep public spectroscopic surveys. Adopting these revised redshifts results in a $0.8sigma$ reduction in the DES-inferred value for $S_8$, which decreases to a $0.5sigma$ reduction when including a systematic redshift calibration error model from mock DES data based on the MICE2 simulation. The combined KV450 + DES-Y1 constraint on $S_8 = 0.762^{+0.025}_{-0.024}$ is in tension with the Planck 2018 constraint from the cosmic microwave background at the level of $2.5sigma$. This result highlights the importance of developing methods to provide accurate redshift calibration for current and future weak lensing surveys.
We present the integrated 3-point shear correlation function $izeta_{pm}$ -- a higher-order statistic of the cosmic shear field -- which can be directly estimated in wide-area weak lensing surveys without measuring the full 3-point shear correlation function, making this a practical and complementary tool to 2-point statistics for weak lensing cosmology. We define it as the 1-point aperture mass statistic $M_{mathrm{ap}}$ measured at different locations on the shear field correlated with the corresponding local 2-point shear correlation function $xi_{pm}$. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated 3-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model $izeta_{pm}$ and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of $izeta_{pm}$ and perform a joint analysis with $xi_{pm}$ for two tomographic source redshift bins with realistic shape-noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of $xi_{pm}$ and $izeta_{pm}$ has the potential to considerably improve parameter constraints from $xi_{pm}$ alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.
We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Ad opting a spatially flat $Lambda$CDM model, we find $S_8 = sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.759^{+0.024}_{-0.021}$ for our fiducial analysis, which is in $3sigma$ tension with the prediction of the Planck Legacy analysis of the cosmic microwave background. We compare our fiducial COSEBIs (Complete Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point shear correlation function and band power spectra, finding results to be in excellent agreement. We investigate the sensitivity of all three statistics to a number of measurement, astrophysical, and modelling systematics, finding our $S_8$ constraints to be robust and dominated by statistical errors. Our cosmological analysis of different divisions of the data pass the Bayesian internal consistency tests, with the exception of the second tomographic bin. As this bin encompasses low redshift galaxies, carrying insignificant levels of cosmological information, we find that our results are unchanged by the inclusion or exclusion of this sample.
Developing analysis pipelines based on statistics beyond two-point functions is critical for extracting a maximal amount of cosmological information from current and upcoming weak lensing surveys. In this paper, we study the impact of the intrinsic a lignment of galaxies (IA) on three promising probes measured from aperture mass maps -- the lensing peaks, minima and full PDF, in comparison and in combination with the shear two-point correlation functions ($gamma$-2PCFs). Our two-dimensional IA infusion method converts the light-cone-projected mass sheets into projected tidal tensors, which are then linearly coupled to an intrinsic ellipticity component with a strength controlled by the coupling parameter $A_{rm IA}$. We validate our method with the $gamma$-2PCFs statistics, recovering well the analytical calculations from the linear alignment model of citet{BridleKing} in a full tomographic setting, and for different $A_{rm IA}$ values. We next use our method to infuse at the galaxy catalogue level a non-linear IA model that includes the density-weighting term introduced in citet{Blazek2015}, and compute the impact on the three aperture mass map statistics. We find that large snr peaks are maximally affected, with deviations reaching 30% (10%) for a {it Euclid}-like (KiDS-like) survey. Modelling the signal in a $w$CDM cosmology universe with $N$-body simulations, we forecast the cosmological bias caused by unmodelled IA for 100 deg$^2$ of {it Euclid}-like data, finding very large offsets in $w_0$ (5-10$sigma_{rm stat}$), $Omega_{rm m}$ (4-6$sigma_{rm stat}$), and $S_8 equiv sigma_8sqrt{Omega_{rm m}/0.3}$ ($sim$3$sigma_{rm stat}$). The method presented in this paper offers a compelling avenue to account for IA in beyond-two-point weak lensing statistics, with a flexibility comparable to that of current $gamma$-2PCFs IA analytical models.
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey a rea. Using cosmic shear 2-point measurements over three redshift bins we find $sigma_8 (Omega_{rm m}/0.3)^{0.5} = 0.81 pm 0.06$ (68% confidence), after marginalising over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About $20$% of our error bar comes from marginalising over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both datasets. Our uncertainties are $sim$30% larger than those from CFHTLenS when we carry out a comparable analysis of the two datasets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of $sigma_8 (Omega_{rm m}/0.3)^{0.5}$ is present regardless of the value of $w$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا