ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the $^{209}$Bi(n,$gamma$)$^{210g}$Bi cross section using the NICE-Detector

64   0   0.0 ( 0 )
 نشر من قبل Rene Reifarth
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The capture cross section of $^{209}$Bi(n,$gamma$)$^{210g}$Bi was measured at different astrophysically energies including thermal capture cross section (25 meV), resonance integral, and the Maxwellian averaged cross section at a thermal energy of $kT$ = 30 keV. The partial capture cross section ($sigma_g$) was determined using the activation technique and by measuring the $^{210}$Po activity. The newly developed and tested NICE detector setup was used to measure the $alpha$-activity of the $^{210}$Po. Using this setup the thermal and resonance integral cross sections were determined to be $16.2;pm;0.97$~mb and $89.81;pm;8.0$~mb, respectively. And the Maxwellian average cross section was measured to be $2.01;pm;0.38$~mb.



قيم البحث

اقرأ أيضاً

64 - H. Nassar , M. Paul , I. Ahmad 2004
The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quas i-Maxwellian (kT = 25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+-2.8 mb, fairly consistent with a recent theoretical estimate, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A <90 produced by the weak s-process in massive stars.
A large $mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59pm9$)% in ferromagnetic BiMn, we observed a $mu$-$e$ decay asymmetry of ($ 13.1pm3.9$)%, which gives $mu^-$ polarization per nuclear polarization equal to $-1.07pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.
The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced via the $^{18}$O($p, n$)$^{18}$F and $^{7}$Li($p, n$)$^{7}$Be reactions, respectively. The derived capture cross sections $langlesigmarangle_{rm kT=5 keV}=9.1pm0.3$ mb and $langlesigmarangle_{rm kT=25 keV}=2.03 pm 0.05$ mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first $^{23}$Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of $s$-process nucleosynthesis are discussed.
296 - R. Izsak , A. Horvath , A. Kiss 2013
The applicability of Coulomb dissociation reactions to determine the cross section for the inverse neutron capture reaction was explored using the reaction 8Li(gamma,n)7Li. A 69.5 MeV/nucleon 8Li beam was incident on a Pb target, and the outgoing neu tron and 7Li nucleus were measured in coincidence. The deduced (n,gamma) excitation function is consistent with data for the direct capture reaction 7Li(n,gamma)8Li and with low-energy effective field theory calculations.
99 - R. Kitahara , K. Hirota , S. Ieki 2019
In a neutron lifetime measurement at the Japan Proton Accelerator Complex, the neutron lifetime is calculated by the neutron decay rate and the incident neutron flux. The flux is obtained due to counting the protons emitted from the neutron absorptio n reaction of ${}^{3}{rm He}$ gas, which is diluted in a mixture of working gas in a detector. Hence, it is crucial to determine the amount of ${}^{3}{rm He}$ in the mixture. In order to improve the accuracy of the number density of the ${}^{3}{rm He}$ nuclei, we suggested to use the ${}^{14}{rm N}({rm n},{rm p}){}^{14}{rm C}$ reaction as a reference because this reaction involves similar kinetic energy as the ${}^{3}{rm He}({rm n},{rm p}){}^{3}{rm H}$ reaction and a smaller reaction cross section to introduce reasonable large partial pressure. The uncertainty of the recommended value of the cross section, however, is not satisfied with our requirement. In this paper, we report the most accurate experimental value of the cross section of the ${}^{14}{rm N}({rm n},{rm p}){}^{14}{rm C}$ reaction at a neutron velocity of 2200 m/s, measured relative to the ${}^{3}{rm He}({rm n},{rm p}){}^{3}{rm H}$ reaction. The result was 1.868 $pm$ 0.003 (stat.) $pm$ 0.006 (sys.) b. Additionally, the cross section of the ${}^{17}{rm O}({rm n},{rm alpha}){}^{14}{rm C}$ reaction at the neutron velocity is also redetermined as 249 $pm$ 6 mb.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا