ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar ($n,gamma$) cross section of $^{23}$Na

72   0   0.0 ( 0 )
 نشر من قبل Claudia Lederer
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The cross section of the $^{23}$Na($n, gamma$)$^{24}$Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at $kT=5.1$ and 25 keV produced via the $^{18}$O($p, n$)$^{18}$F and $^{7}$Li($p, n$)$^{7}$Be reactions, respectively. The derived capture cross sections $langlesigmarangle_{rm kT=5 keV}=9.1pm0.3$ mb and $langlesigmarangle_{rm kT=25 keV}=2.03 pm 0.05$ mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first $^{23}$Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of $s$-process nucleosynthesis are discussed.



قيم البحث

اقرأ أيضاً

64 - H. Nassar , M. Paul , I. Ahmad 2004
The 62Ni(n,gamma)63Ni(t_1/2=100+-2 yrs) reaction plays an important role in the control of the flow path of the slow neutron-capture (s-) nucleosynthesis process. We have measured for the first time the total cross section of this reaction for a quas i-Maxwellian (kT = 25 keV) neutron flux. The measurement was performed by fast-neutron activation, combined with accelerator mass spectrometry to detect directly the 63Ni product nuclei. The experimental value of 28.4+-2.8 mb, fairly consistent with a recent theoretical estimate, affects the calculated net yield of 62Ni itself and the whole distribution of nuclei with 62<A <90 produced by the weak s-process in massive stars.
The $^{22}$Ne($p,gamma$)$^{23}$Na reaction, part of the neon-sodium cycle of hydrogen burning, may explain the observed anticorrelation between sodium and oxygen abundances in globular cluster stars. Its rate is controlled by a number of low-energy r esonances and a slowly varying non-resonant component. Three new resonances at $E_p$ = 156.2, 189.5, and 259.7 keV have recently been observed and confirmed. However, significant uncertainty on the reaction rate remains due to the non-resonant process and to two suggested resonances at $E_p$ = 71 and 105 keV. Here, new $^{22}$Ne($p,gamma$)$^{23}$Na data with high statistics and low background are reported. Stringent upper limits of 6$times$10$^{-11}$ and 7$times$10$^{-11}$,eV (90% confidence level), respectively, are placed on the two suggested resonances. In addition, the off-resonant S-factor has been measured at unprecedented low energy, constraining the contributions from a subthreshold resonance and the direct capture process. As a result, at a temperature of 0.1 GK the error bar of the $^{22}$Ne($p,gamma$)$^{23}$Na rate is now reduced by three orders of magnitude.
The $gamma n to pi^0 n$ differential cross section evaluated for 27 energy bins span the photon-energy range 290-813 MeV (W = 1.195-1.553 GeV) and the pion c.m. polar production angles, ranging from 18 deg to 162 deg, making use of model-dependent nu clear corrections to extract pi0 production data on the neutron from measurements on the deuteron target. Additionally, the total photoabsorption cross section was measured. The tagged photon beam produced by the 883-MeV electron beam of the Mainz Microtron MAMI was used for the 0-meson production. Our accumulation of 3.6 x 10^6 $gamma n to pi^0 n$ events allowed a detailed study of the reaction dynamics. Our data are in reasonable agreement with previous A2 measurements and extend them to lower energies. The data are compared to predictions of previous SAID, MAID, and BnGa partial-wave analyses and to the latest SAID fit MA19 that included our data. Selected photon decay amplitudes $N^* to gamma n$ at the resonance poles are determined for the first time.
295 - R. Izsak , A. Horvath , A. Kiss 2013
The applicability of Coulomb dissociation reactions to determine the cross section for the inverse neutron capture reaction was explored using the reaction 8Li(gamma,n)7Li. A 69.5 MeV/nucleon 8Li beam was incident on a Pb target, and the outgoing neu tron and 7Li nucleus were measured in coincidence. The deduced (n,gamma) excitation function is consistent with data for the direct capture reaction 7Li(n,gamma)8Li and with low-energy effective field theory calculations.
The level density and gamma-ray strength function (gammaSF) of 243Pu have been measured in the quasi-continuum using the Oslo method. Excited states in 243Pu were populated using the 242Pu(d,p) reaction. The level density closely follows the constant -temperature level density formula for excitation energies above the pairing gap. The gammaSF displays a double-humped resonance at low energy as also seen in previous investigations of actinide isotopes. The structure is interpreted as the scissors resonance and has a centroid of omega_{SR}=2.42(5)MeV and a total strength of B_{SR}=10.1(15)mu_N^2, which is in excellent agreement with sum-rule estimates. The measured level density and gammaSF were used to calculate the 242Pu(n,gamma) cross section in a neutron energy range for which there were previously no measured data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا