ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an optimization framework that combines surveillance schedules and sparse control to bound the risk of spreading processes such as epidemics and wildfires. Here, risk is considered the risk of an undetected outbreak, i.e. the product of the probability of an outbreak and the impact of that outbreak, and we can bound or minimize the risk by resource allocation and persistent monitoring schedules. The presented framework utilizes the properties of positive systems and convex optimization to provide scalable algorithms for both surveillance and intervention purposes. We demonstrate with different spreading process examples how the method can incorporate different parameters and scenarios such as a vaccination strategy for epidemics and the effect of vegetation, wind and outbreak rate on a wildfire in persistent monitoring scenarios.
This paper presents a control reconfiguration approach to improve the performance of two classes of dynamical systems. Motivated by recent research on re-engineering cyber-physical systems, we propose a three-step control retrofit procedure. First, w
The standard approach to risk-averse control is to use the Exponential Utility (EU) functional, which has been studied for several decades. Like other risk-averse utility functionals, EU encodes risk aversion through an increasing convex mapping $var
In this paper, we introduce the notion of periodic safety, which requires that the system trajectories periodically visit a subset of a forward-invariant safe set, and utilize it in a multi-rate framework where a high-level planner generates a refere
We propose a new risk-constrained reformulation of the standard Linear Quadratic Regulator (LQR) problem. Our framework is motivated by the fact that the classical (risk-neutral) LQR controller, although optimal in expectation, might be ineffective u
This paper studies epidemic processes over discrete-time periodic time-varying networks. We focus on the susceptible-infected-susceptible (SIS) model that accounts for a (possibly) mutating virus. We say that an agent is in the disease-free state if