ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce the notion of periodic safety, which requires that the system trajectories periodically visit a subset of a forward-invariant safe set, and utilize it in a multi-rate framework where a high-level planner generates a reference trajectory that is tracked by a low-level controller under input constraints. We introduce the notion of fixed-time barrier functions which is leveraged by the proposed low-level controller in a quadratic programming framework. Then, we design a model predictive control policy for high-level planning with a bound on the rate of change for the reference trajectory to guarantee that periodic safety is achieved. We demonstrate the effectiveness of the proposed strategy on a simulation example, where the proposed fixed-time stabilizing low-level controller shows successful satisfaction of control objectives, whereas an exponentially stabilizing low-level controller fails.
This paper presents a control strategy based on a new notion of time-varying fixed-time convergent control barrier functions (TFCBFs) for a class of coupled multi-agent systems under signal temporal logic (STL) tasks. In this framework, each agent is
In this paper we present a multi-rate control architecture for safety critical systems. We consider a high level planner and a low level controller which operate at different frequencies. This multi-rate behavior is described by a piecewise nonlinear
This paper presents a control strategy based on time-varying fixed-time convergent higher order control barrier functions for a class of leader-follower multi-agent systems under signal temporal logic (STL) tasks. Each agent is assigned a local STL t
We introduce High-Relative Degree Stochastic Control Lyapunov functions and Barrier Functions as a means to ensure asymptotic stability of the system and incorporate state dependent high relative degree safety constraints on a non-linear stochastic s
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control syn