ﻻ يوجد ملخص باللغة العربية
This paper presents a simple and effective approach in low-resource named entity recognition (NER) based on multi-hop dependency trigger. Dependency trigger refer to salient nodes relative to a entity in the dependency graph of a context sentence. Our main observation is that there often exists trigger which play an important role to recognize the location and type of entity in sentence. Previous research has used manual labelling of trigger. Our main contribution is to propose use a syntactic parser to automatically annotate trigger. Experiments on two English datasets (CONLL 2003 and BC5CDR) show that the proposed method is comparable to the previous trigger-based NER model.
Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that en
Distant supervision allows obtaining labeled training corpora for low-resource settings where only limited hand-annotated data exists. However, to be used effectively, the distant supervision must be easy to gather. In this work, we present ANEA, a t
In recent years, great success has been achieved in the field of natural language processing (NLP), thanks in part to the considerable amount of annotated resources. For named entity recognition (NER), most languages do not have such an abundance of
Deep neural models for low-resource named entity recognition (NER) have shown impressive results by leveraging distant super-vision or other meta-level information (e.g. explanation). However, the costs of acquiring such additional information are ge
Existing models for cross-domain named entity recognition (NER) rely on numerous unlabeled corpus or labeled NER training data in target domains. However, collecting data for low-resource target domains is not only expensive but also time-consuming.