ﻻ يوجد ملخص باللغة العربية
Radiation-dust driven outflows, where radiation pressure on dust grains accelerates gas, occur in many astrophysical environments. Almost all previous numerical studies of these systems have assumed that the dust was perfectly-coupled to the gas. However, it has recently been shown that the dust in these systems is unstable to a large class of resonant drag instabilities (RDIs) which de-couple the dust and gas dynamics and could qualitatively change the nonlinear outcome of these outflows. We present the first simulations of radiation-dust driven outflows in stratified, inhomogeneous media, including explicit grain dynamics and a realistic spectrum of grain sizes and charge, magnetic fields and Lorentz forces on grains (which dramatically enhance the RDIs), Coulomb and Epstein drag forces, and explicit radiation transport allowing for different grain absorption and scattering properties. In this paper we consider conditions resembling giant molecular clouds (GMCs), HII regions, and distributed starbursts, where optical depths are modest ($lesssim 1$), single-scattering effects dominate radiation-dust coupling, Lorentz forces dominate over drag on grains, and the fastest-growing RDIs are similar, such as magnetosonic and fast-gyro RDIs. These RDIs generically produce strong size-dependent dust clustering, growing nonlinear on timescales that are much shorter than the characteristic times of the outflow. The instabilities produce filamentary and plume-like or horsehead nebular morphologies that are remarkably similar to observed dust structures in GMCs and HII regions. Additionally, in some cases they strongly alter the magnetic field structure and topology relative to filaments. Despite driving strong micro-scale dust clumping which leaves some gas behind, an order-unity fraction of the gas is always efficiently entrained by dust.
Damping of the previously discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is studied using the local approach to dynamics of gas-dust perturbations in the limit of the small dust fraction. Turbulence in a disc is r
The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of
In this first research note of a series of two, we conduct optical/UV investigations of the spectropolarimetric signatures emerging from the structure of quasars (Elvis 2000) applied to a purely theoretical, dusty model. We aim to explore the similar
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hal