ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Properties in HII Regions in M33

151   0   0.0 ( 0 )
 نشر من قبل Monica Relano
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of HII regions in the Local Group Galaxy M33 presenting different spatial configurations between the stars, gas and dust to understand the dust evolution under different environments. We model the SED of each region using the DustEM tool and obtain the mass relative to hydrogen for Very Small Grains (YVSG), Polycyclic Aromatic Hydrocarbons (YPAH) and Big Grains (YBG). The relative mass of the VSGs (YVSG/YTOT) is a factor of 1.7 higher for HII regions classified as filled and mixed than for regions presenting a shell structure. The enhancement of VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities greater than 50 km/s. The gas-to-dust ratio derived for the HII regions in our sample exhibits two regimes related to the HI-H2 transition of the ISM. Regions corresponding to the HI diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H2 molecular phase present a flatter dust-gas surface density distribution. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of 50-90 km/s existing in the interior of the most luminous HII regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BG grains might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metals incorporation to the dust mass is occurring in the interior of the HII regions in M33.



قيم البحث

اقرأ أيضاً

We present a multiwavelength (ultraviolet, infrared, optical and CO) study of a set of luminous HII regions in M33: NGC 604, NGC 595, NGC 592, NGC 588 and IC131. We study the emission distribution in the interiors of the HII regions to investigate th e relation between the dust emission at 8 micron and 24 micron and the location of the massive stars and gas. We find that the 24 micron emission is closely related to the location of the ionized gas, while the 8 micron emission is more related to the boundaries of the molecular clouds consistently with its expected association with photodissociation regions (PDRs). Ultraviolet emission is generally surrounded by the H-alpha emission. For NGC 604 and NGC 595, where CO data are available, we see a radial gradient of the emission distribution at the wavelengths studied here: from the center to the boundary of the HII regions we observe ultraviolet, H-alpha, 24 micron, 8 micron and CO emission distributions. We quantify the star formation for our HII regions using the integrated fluxes at the set of available wavelengths, assuming an instantaneous burst of star formation. We show that a linear combination of 24 micron and H-alpha emission better describes the star formation for these objects than the dust luminosities by themselves. For NGC 604, we obtain and compare extinction maps derived from the Balmer decrement and from the 24 micron and H-alpha emission line ratio. Although the maps show locally different values in extinction, we find similar integrated extinctions derived from the two methods. We also investigate here the possible existence of embedded star formation within NGC 604.
167 - S. Verley , M. Rela~no , C. Kramer 2010
Within the framework of the HERM33ES Key Project, using the high resolution and sensitivity of the Herschel photometric data, we study the compact emission in the Local Group spiral galaxy M33 to investigate the nature of the compact SPIRE emission s ources. We extracted a catalogue of sources at 250um in order to investigate the nature of this compact emission. Taking advantage of the unprecedented Herschel resolution at these wavelengths, we also focus on a more precise study of some striking Halpha shells in the northern part of the galaxy. We present a catalogue of 159 compact emission sources in M33 identified by SExtractor in the 250um SPIRE band that is the one that provides the best spatial resolution. We also measured fluxes at 24um and Halpha for those 159 extracted sources. The morphological study of the shells also benefits from a multiwavelength approach including Halpha, far-UV from GALEX, and infrared from both Spitzer IRAC 8um and MIPS 24um in order to make comparisons. For the 159 compact sources selected at 250um, we find a very strong Pearson correlation coefficient with the MIPS 24um emission (r24 = 0.94) and a rather strong correlation with the Halpha emission, although with more scatter (rHa = 0.83). The morphological study of the Halpha shells shows a displacement between far-ultraviolet, Halpha, and the SPIRE bands. The cool dust emission from SPIRE clearly delineates the Halpha shell structures. The very strong link between the 250um compact emission and the 24um and Halpha emissions, by recovering the star formation rate from standard recipes for HII regions, allows us to provide star formation rate calibrations based on the 250um compact emission alone. The different locations of the Halpha and far-ultraviolet emissions with respect to the SPIRE cool dust emission leads to a dynamical age of a few Myr for the Halpha shells and the associated cool dust.
Because of their relatively simple morphology, bubble HII regions have been instrumental to our understanding of star formation triggered by HII regions. With the far-infrared (FIR) spectral coverage of the Herschel satellite, we can access the wavel engths where these regions emit the majority of their energy through their dust emission. At Herschel wavelengths 70 micron to 500 micron, the emission associated with HII regions is dominated by the cool dust in their photodissociation regions (PDRs). We find average dust temperatures of 26K along the PDRs, with little variation between the HII regions in the sample, while local filaments and infrared dark clouds average 19K and 15K respectively. Higher temperatures lead to higher values of the Jeans mass, which may affect future star formation. The mass of the material in the PDR, collected through the expansion of the HII region, is between ~300 and ~10,000 Solar masses for the HII regions studied here. These masses are in rough agreement with the expected masses swept up during the expansion of the hii regions. Approximately 20% of the total FIR emission is from the direction of the bubble central regions. This suggests that we are detecting emission from the near-side and far-side PDRs along the line of sight and that bubbles are three-dimensional structures. We find only weak support for a relationship between dust temperature and beta, of a form similar to that caused by noise and calibration uncertainties alone.
110 - M. Relano , S. Verley , I. Perez 2013
Within the framework of the Herschel M 33 extended survey HerM33es we study the Spectral Energy Distribution (SED) of a set of HII regions in M 33 as a function of the morphology. We present a catalogue of 119 HII regions morphologically classified: 9 filled, 47 mixed, 36 shell, and 27 clear shell HII regions. For each object we extract the photometry at twelve available wavelength bands (from FUV-1516A to IR-250mi) and obtain the SED. We also obtain emission line profiles across the regions to study the location of the stellar, ionised gas, and dust components. We find trends for the SEDs related to the morphology, showing that the star and gas-dust configuration affects the ratios of the emission in different bands. The mixed and filled regions show higher emission at 24mi than the shells and clear shells, which could be due to the proximity of the dust to the stellar clusters in the case of mixed and filled regions. The FIR peak for shells and clear shells seems to be located towards longer wavelengths, indicating that the dust is colder for this type of objects.The logarithmic 100/70mi ratio for filled and mixed regions remains constant over one order of magnitude in Halpha and FUV surface brightness, while the shells and clear shells exhibit a wider range of values of almost two orders of magnitude. We derive dust masses and temperatures fitting the individual SEDs with dust models proposed in the literature. The derived dust mass range is between 10^2-10^4 Msun and the cold dust temperature spans T(cold)~12-27 K. The spherical geometrical model proposed for the Halpha clear shells is confirmed by the emission profile obtained from the observations and is used to infer the electron density within the envelope: the typical electron density is 0.7+-0.3 cm^-3, while filled regions can reach values two to five times higher.
The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا