ﻻ يوجد ملخص باللغة العربية
Recently, the intrinsic magnetic topological insulator MnBi2Te4 has attracted enormous research interest due to the great success in realizing exotic topological quantum states, such as the quantum anomalous Hall effect (QAHE), axion insulator state, high-Chern-number and high-temperature Chern insulator states. One key issue in this field is to effectively manipulate these states and control topological phase transitions. Here, by systematic angle-dependent transport measurements, we reveal a magnetization-tuned topological quantum phase transition from Chern insulator to magnetic insulator with gapped Dirac surface states in MnBi2Te4 devices. Specifically, as the magnetic field is tilted away from the out-of-plane direction by around 40-60 degrees, the Hall resistance deviates from the quantization value and a colossal, anisotropic magnetoresistance is detected. The theoretical analyses based on modified Landauer-Buttiker formalism show that the field-tilt-driven switching from ferromagnetic state to canted antiferromagnetic state induces a topological quantum phase transition from Chern insulator to magnetic insulator with gapped Dirac surface states in MnBi2Te4 devices. Our work provides an efficient means for modulating topological quantum states and topological quantum phase transitions.
We report a continuous phase transition between quantum-anomalous-Hall and trivial-insulator phases in a magnetic topological insulator upon magnetization rotation. The Hall conductivity transits from one plateau of quantized Hall conductivity $e^2/h
The interplay between band topology and magnetic order could generate a variety of time-reversal-breaking gapped topological phases with exotic topological quantization phenomena, such as quantum anomalous Hall (QAH) insulators and axion insulators (
The quantized version of anomalous Hall effect realized in magnetic topological insulators (MTIs) has great potential for the development of topological quantum physics and low-power electronic/spintronic applications. To enable dissipationless chira
Topological superconductivity holds promise for fault-tolerant quantum computing. While planar Josephson junctions are attractive candidates to realize this exotic state, direct phase-measurements as the fingerprint of the topological transition are
Topological insulators are expected to be a promising platform for novel quantum phenomena, whose experimental realizations require sophisticated devices. In this Technical Review, we discuss four topics of particular interest for TI devices: topolog