ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncertainty-Aware Learning for Improvements in Image Quality of the Canada-France-Hawaii Telescope

68   0   0.0 ( 0 )
 نشر من قبل Sankalp Gilda
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We leverage state-of-the-art machine learning methods and a decades worth of archival data from the Canada-France-Hawaii Telescope (CFHT) to predict observatory image quality (IQ) from environmental conditions and observatory operating parameters. Specifically, we develop accurate and interpretable models of the complex dependence between data features and observed IQ for CFHTs wide field camera, MegaCam. Our contributions are several-fold. First, we collect, collate and reprocess several disparate data sets gathered by CFHT scientists. Second, we predict probability distribution functions (PDFs) of IQ, and achieve a mean absolute error of $sim0.07$ for the predicted medians. Third, we explore data-driven actuation of the 12 dome ``vents, installed in 2013-14 to accelerate the flushing of hot air from the dome. We leverage epistemic and aleatoric uncertainties in conjunction with probabilistic generative modeling to identify candidate vent adjustments that are in-distribution (ID) and, for the optimal configuration for each ID sample, we predict the reduction in required observing time to achieve a fixed SNR. On average, the reduction is $sim15%$. Finally, we rank sensor data features by Shapley values to identify the most predictive variables for each observation. Our long-term goal is to construct reliable and real-time models that can forecast optimal observatory operating parameters for optimization of IQ. Such forecasts can then be fed into scheduling protocols and predictive maintenance routines. We anticipate that such approaches will become standard in automating observatory operations and maintenance by the time CFHTs successor, the Maunakea Spectroscopic Explorer (MSE), is installed in the next decade.



قيم البحث

اقرأ أيضاً

We present an overview of SITELLE, an Imaging Fourier Transform Spectrometer (iFTS) available at the 3.6-meter Canada-France-Hawaii Telescope. SITELLE is a Michelson-type interferometer able to reconstruct the spectrum of every light source within it s 11 field of view in filter-selected bands of the visible (350 to 900 nm). The spectral resolution can be adjusted up to R = 10 000 and the spatial resolution is seeing-limited and sampled at 0.32 arcsec per pixel. We describe the design of the instrument as well as the data reduction and analysis process. To illustrate SITELLEs capabilities, we present some of the data obtained during and since the August 2015 commissioning run. In particular, we demonstrate its ability to separate the components of the [OII] $lambdalambda$ 3726,29 doublet in Orion and to reach R = 9500 around H-alpha; to detect diffuse emission at a level of 4 x 10e-17 erg/cm2/s/arcsec2; to obtain integrated spectra of stellar absorption lines in galaxies despite the well-known multiplex disadvantage of the iFTS; and to detect emission-line galaxies at different redshifts.
SPIRou is a near-IR echelle spectropolarimeter and high-precision velocimeter under construction as a next-generation instrument for the Canada-France-Hawaii-Telescope. It is designed to cover a very wide simultaneous near-IR spectral range (0.98-2.3 5 {mu}m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars at a radial velocity (RV) precision of 1m/s. The main science goals of SPIRou are the detection of habitable super-Earths around low-mass stars and the study of how critically magnetic fields impact star / planet formation. Following a successful final design review in Spring 2014, SPIRou is now under construction and is scheduled to see first light in late 2017. We present an overview of key aspects of SPIRous optical and mechanical design.
We present data products from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). CFHTLenS is based on the Wide component of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). It encompasses 154 deg^2 of deep, optical, high-quality, sub-arcsecond imaging data in the five optical filters u^*griz. The article presents our data processing of the complete CFHTLenS data set. We were able to obtain a data set with very good image quality and high-quality astrometric and photometric calibration. Our external astrometric accuracy is between 60-70 mas with respect to SDSS data and the internal alignment in all filters is around 30 mas. Our average photometric calibration shows a dispersion on the order of 0.01 to 0.03 mag for griz and about 0.04 mag for u^* with respect to SDSS sources down to i <= 21. In the spirit of the CFHTLS all our data products are released to the astronomical community via the Canadian Astronomy Data Centre. We give a description and how-to manuals of the public products which include image pixel data, source catalogues with photometric redshift estimates and all relevant quantities to perform weak lensing studies.
The Canada France Hawaii Telescope Corporation (CFHT) plans to repurpose its observatory on the summit of Maunakea and operate a new wide field spectroscopic survey telescope, the Maunakea Spectroscopic Explorer (MSE). MSE will upgrade the observator y with a larger 11.25m aperture telescope and equip it with dedicated instrumentation to capitalize on the site, which has some of the best seeing in the northern hemisphere, and offer its user community the ability to do transformative science. The knowledge and experience of the current CFHT staff will contribute greatly to the engineering of this new facility. MSE will reuse the same building and telescope pier as CFHT. However, it will be necessary to upgrade the support pier to accommodate a bigger telescope and replace the current dome since a wider slit opening of 12.5 meters in diameter is needed. Once the project is completed the new facility will be almost indistinguishable on the outside from the current CFHT observatory. MSE will build upon CFHTs pioneering work in remote operations, with no staff at the observatory during the night, and use modern technologies to reduce daytime maintenance work. This paper describes the design approach for redeveloping the CFHT facility for MSE including the infrastructure and equipment considerations required to support and facilitate nighttime observations. The building will be designed so existing equipment and infrastructure can be reused wherever possible while meeting new requirement demands. Past experience and lessons learned will be used to create a modern, optimized, and logical layout of the facility. The purpose of this paper is to provide information to readers involved in the MSE project or organizations involved with the redevelopment of an existing observatory facility for a new mission.
We study the X-ray and optical properties of 16 Broad Absorption Line (BAL) quasars detected in about 3 degree square region common to the wide synoptic (W-1) component of the Canada-France-HawaiiTelescope Legacy Survey (CFHTLS) and the XMM Large Sca le Structure survey (XMM-LSS). The BAL fraction is found to be 10% in full sample, 7% for the optical colour selected QSOs and as high as 33% if we consider QSOs selected from their IR colours. The X-ray detected non-BAL and BAL quasars have a mean observed X-ray-to-optical spectral slope of -1.47 +/- 0.13 and -1.66 +/- 0.17 respectively. We also find that the BAL QSOs have alpha_ox systematically smaller than what is expected from the relationship between optical luminosity and alpha_ox as derived from our sample. Based on this, we show, as already reported in the literature for quasars with high optical luminosities, our new sample of BAL QSOs have X-ray luminosity a factor of three smaller than what has been found for non-BAL QSOs with similar optical luminosities. Comparison of hardness ratio of the BAL and non-BAL QSOs suggests a possible soft X-ray weakness of BAL QSOs. Combining our sample, of relatively fainter QSOs, with others from the literature we show that larger balnicity index (BI) and maximum velocity (V_max) of the C IV absorption are correlated with steeper X-ray to optical spectral index. We argue that this is most likely a consequence of the existence of a lower envelope in the distribution of BI (or V_max) values versus optical luminosity. Our results thus show that the previously known X-ray weakness of BAL QSOs extends to lower optical luminosities as well.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا