ترغب بنشر مسار تعليمي؟ اضغط هنا

Risk contributions of lambda quantiles

97   0   0.0 ( 0 )
 نشر من قبل Akif Ince
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Risk contributions of portfolios form an indispensable part of risk adjusted performance measurement. The risk contribution of a portfolio, e.g., in the Euler or Aumann-Shapley framework, is given by the partial derivatives of a risk measure applied to the portfolio return in direction of the asset weights. For risk measures that are not positively homogeneous of degree 1, however, known capital allocation principles do not apply. We study the class of lambda quantile risk measures, that includes the well-known Value-at-Risk as a special case, but for which no known allocation rule is applicable. We prove differentiability and derive explicit formulae of the derivatives of lambda quantiles with respect to their portfolio composition, that is their risk contribution. For this purpose, we define lambda quantiles on the space of portfolio compositions and consider generic (also non-linear) portfolio operators. We further derive the Euler decomposition of lambda quantiles for generic portfolios and show that lambda quantiles are homogeneous in the space of portfolio compositions, with a homogeneity degree that depends on the portfolio composition and the lambda function. This result is in stark contrast to the positive homogeneity properties of risk measures defined on the space of random variables which admit a constant homogeneity degree. We introduce a generalised version of Euler contributions and Euler allocation rule, which are compatible with risk measures of any homogeneity degree and non-linear portfolios. We further provide financial interpretations of the homogeneity degree of lambda quantiles and introduce the notion of event-specific homogeneity of portfolio operators.



قيم البحث

اقرأ أيضاً

A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble ms of the VaR. In this paper we propose three nonparametric backtesting methodologies for the Lambda VaR which exploit different features. Two of these tests directly assess the correctness of the level of coverage predicted by the model. One of these tests is bilateral and provides an asymptotic result. A third test assess the accuracy of the Lambda VaR that depends on the choice of the P&L distribution. However, this test requires the storage of more information. Finally, we perform a backtesting exercise and we compare our results with the ones from Hitaj and Peri (2015)
185 - Fabio Bellini , Ilaria Peri 2021
We give an axiomatic foundation to $Lambda$-quantiles, a family of generalized quantiles introduced by Frittelli et al. (2014) under the name of Lambda Value at Risk. Under mild assumptions, we show that these functionals are characterized by a prope rty that we call locality, that means that any change in the distribution of the probability mass that arises entirely above or below the value of the $Lambda$-quantile does not modify its value. We compare with a related axiomatization of the usual quantiles given by Chambers (2009), based on the stronger property of ordinal covariance, that means that quantiles are covariant with respect to increasing transformations. Further, we present a systematic treatment of the properties of $Lambda$-quantiles, refining some of the results of Frittelli et al. (2014) and Burzoni et al. (2017) and showing that in the case of a nonincreasing $Lambda$ the properties of $Lambda$-quantiles closely resemble those of the usual quantiles.
Recently, financial industry and regulators have enhanced the debate on the good properties of a risk measure. A fundamental issue is the evaluation of the quality of a risk estimation. On the one hand, a backtesting procedure is desirable for assess ing the accuracy of such an estimation and this can be naturally achieved by elicitable risk measures. For the same objective, an alternative approach has been introduced by Davis (2016) through the so-called consistency property. On the other hand, a risk estimation should be less sensitive with respect to small changes in the available data set and exhibit qualitative robustness. A new risk measure, the Lambda value at risk (Lambda VaR), has been recently proposed by Frittelli et al. (2014), as a generalization of VaR with the ability to discriminate the risk among P&L distributions with different tail behaviour. In this article, we show that Lambda VaR also satisfies the properties of robustness, elicitability and consistency under some conditions.
121 - Jiamin Yu 2021
It has been for a long time to use big data of autonomous vehicles for perception, prediction, planning, and control of driving. Naturally, it is increasingly questioned why not using this big data for risk management and actuarial modeling. This art icle examines the emerging technical difficulties, new ideas, and methods of risk modeling under autonomous driving scenarios. Compared with the traditional risk model, the novel model is more consistent with the real road traffic and driving safety performance. More importantly, it provides technical feasibility for realizing risk assessment and car insurance pricing under a computer simulation environment.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w ell-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا