ﻻ يوجد ملخص باللغة العربية
Risk contributions of portfolios form an indispensable part of risk adjusted performance measurement. The risk contribution of a portfolio, e.g., in the Euler or Aumann-Shapley framework, is given by the partial derivatives of a risk measure applied to the portfolio return in direction of the asset weights. For risk measures that are not positively homogeneous of degree 1, however, known capital allocation principles do not apply. We study the class of lambda quantile risk measures, that includes the well-known Value-at-Risk as a special case, but for which no known allocation rule is applicable. We prove differentiability and derive explicit formulae of the derivatives of lambda quantiles with respect to their portfolio composition, that is their risk contribution. For this purpose, we define lambda quantiles on the space of portfolio compositions and consider generic (also non-linear) portfolio operators. We further derive the Euler decomposition of lambda quantiles for generic portfolios and show that lambda quantiles are homogeneous in the space of portfolio compositions, with a homogeneity degree that depends on the portfolio composition and the lambda function. This result is in stark contrast to the positive homogeneity properties of risk measures defined on the space of random variables which admit a constant homogeneity degree. We introduce a generalised version of Euler contributions and Euler allocation rule, which are compatible with risk measures of any homogeneity degree and non-linear portfolios. We further provide financial interpretations of the homogeneity degree of lambda quantiles and introduce the notion of event-specific homogeneity of portfolio operators.
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble
We give an axiomatic foundation to $Lambda$-quantiles, a family of generalized quantiles introduced by Frittelli et al. (2014) under the name of Lambda Value at Risk. Under mild assumptions, we show that these functionals are characterized by a prope
Recently, financial industry and regulators have enhanced the debate on the good properties of a risk measure. A fundamental issue is the evaluation of the quality of a risk estimation. On the one hand, a backtesting procedure is desirable for assess
It has been for a long time to use big data of autonomous vehicles for perception, prediction, planning, and control of driving. Naturally, it is increasingly questioned why not using this big data for risk management and actuarial modeling. This art
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the w