ﻻ يوجد ملخص باللغة العربية
Recently, financial industry and regulators have enhanced the debate on the good properties of a risk measure. A fundamental issue is the evaluation of the quality of a risk estimation. On the one hand, a backtesting procedure is desirable for assessing the accuracy of such an estimation and this can be naturally achieved by elicitable risk measures. For the same objective, an alternative approach has been introduced by Davis (2016) through the so-called consistency property. On the other hand, a risk estimation should be less sensitive with respect to small changes in the available data set and exhibit qualitative robustness. A new risk measure, the Lambda value at risk (Lambda VaR), has been recently proposed by Frittelli et al. (2014), as a generalization of VaR with the ability to discriminate the risk among P&L distributions with different tail behaviour. In this article, we show that Lambda VaR also satisfies the properties of robustness, elicitability and consistency under some conditions.
A new risk measure, the lambda value at risk (Lambda VaR), has been recently proposed from a theoretical point of view as a generalization of the value at risk (VaR). The Lambda VaR appears attractive for its potential ability to solve several proble
We derive bounds on the distribution function, therefore also on the Value-at-Risk, of $varphi(mathbf X)$ where $varphi$ is an aggregation function and $mathbf X = (X_1,dots,X_d)$ is a random vector with known marginal distributions and partially kno
In economics, insurance and finance, value at risk (VaR) is a widely used measure of the risk of loss on a specific portfolio of financial assets. For a given portfolio, time horizon, and probability $alpha$, the $100alpha%$ VaR is defined as a thres
We propose a generalization of the classical notion of the $V@R_{lambda}$ that takes into account not only the probability of the losses, but the balance between such probability and the amount of the loss. This is obtained by defining a new class of
Several well-established benchmark predictors exist for Value-at-Risk (VaR), a major instrument for financial risk management. Hybrid methods combining AR-GARCH filtering with skewed-$t$ residuals and the extreme value theory-based approach are parti