ﻻ يوجد ملخص باللغة العربية
We establish the conjecture of Reiner and Yong for an explicit combinatorial formula for the expansion of a Grothendieck polynomial into the basis of Lascoux polynomials. This expansion is a subtle refinement of its symmetric function version due to Buch, Kresch, Shimozono, Tamvakis, and Yong, which gives the expansion of stable Grothendieck polynomials indexed by permutations into Grassmannian stable Grothendieck polynomials. Our expansion is the K-theoretic analogue of that of a Schubert polynomial into Demazure characters, whose symmetric analogue is the expansion of a Stanley symmetric function into Schur functions. Our expansions extend to flagged Grothendieck polynomials.
This report formulates a conjectural combinatorial rule that positively expands Grothendieck polynomials into Lascoux polynomials. It generalizes one such formula expanding Schubert polynomials into key polynomials, and refines another one expanding stable Grothendieck polynomials.
We apply down operators in the affine nilCoxeter algebra to yield explicit combinatorial expansions for certain families of non-commutative k-Schur functions. This yields a combinatorial interpretation for a new family of k-Littlewood-Richardson coefficients.
We introduce families of two-parameter multivariate polynomials indexed by pairs of partitions $v,w$ -- biaxial double $(beta,q)$-Grothendieck polynomials -- which specialize at $q=0$ and $v=1$ to double $beta$-Grothendieck polynomials from torus-equ
We introduce a new perspective on the $K$-theory of exact categories via the notion of a CGW-category. CGW-categories are a generalization of exact categories that admit a Qullen $Q$-construction, but which also include examples such as finite sets a
We study the algebraic $K$-theory and Grothendieck-Witt theory of proto-exact categories of vector bundles over monoid schemes. Our main results are the complete description of the algebraic $K$-theory space of an integral monoid scheme $X$ in terms