ﻻ يوجد ملخص باللغة العربية
This report formulates a conjectural combinatorial rule that positively expands Grothendieck polynomials into Lascoux polynomials. It generalizes one such formula expanding Schubert polynomials into key polynomials, and refines another one expanding stable Grothendieck polynomials.
We establish the conjecture of Reiner and Yong for an explicit combinatorial formula for the expansion of a Grothendieck polynomial into the basis of Lascoux polynomials. This expansion is a subtle refinement of its symmetric function version due to
For a simple graph $G$, denote by $n$, $Delta(G)$, and $chi(G)$ its order, maximum degree, and chromatic index, respectively. A connected class 2 graph $G$ is edge-chromatic critical if $chi(G-e)<Delta(G)+1$ for every edge $e$ of $G$. Define $G$ to b
Hedetniemi conjectured in 1966 that $chi(G times H) = min{chi(G), chi(H)}$ for all graphs $G$ and $H$. Here $Gtimes H$ is the graph with vertex set $ V(G)times V(H)$ defined by putting $(x,y)$ and $(x,y)$ adjacent if and only if $xxin E(G)$ and $yyin
In 1990, Cvetkovi{c} and Rowlinson [The largest eigenvalue of a graph: a survey, Linear Multilinear Algebra 28(1-2) (1990), 3--33] conjectured that among all outerplanar graphs on $n$ vertices, $K_1vee P_{n-1}$ attains the maximum spectral radius. In
The conjecture, still widely open, posed by Marco Buratti, Peter Horak and Alex Rosa states that a list $L$ of $v-1$ positive integers not exceeding $leftlfloor frac{v}{2}rightrfloor$ is the list of edge-lengths of a suitable Hamiltonian path of the