ﻻ يوجد ملخص باللغة العربية
Neutron-rich nuclei in the vicinity of the $N=40$ island of inversion are characterized by shell evolution and exhibit deformed ground states. In several nuclei isomeric states have been observed and attributed to excitations to the intruder neutron $1g_{9/2}$ orbital. In the present study we searched for isomeric states in nuclei around $N=40$, $Z=22$ produced by projectile fragmentation at RIBF. Delayed $gamma$ rays were detected by the EURICA germanium detector array. High statistics data allowed for an updated decay scheme of $^{60}$V. The lifetime of an isomeric state in $^{64}$V was measured for the first time in the present experiment. A previously unobserved isomeric state was discovered in $^{58}$Sc. The measured lifetime suggests a parity changing transition, originating from an odd number of neutrons in the $1g_{9/2}$ orbital. The nature of the isomeric state in $^{58}$Sc is thus different from isomers in the less exotic V and Sc nuclei.
The spherical-to-prolate shape transition in neutron-rich Cr isotopes from N = 34 to 42 is studied by solving the collective Schru007fodinger equation for the five-dimensional quadrupole collective Hamiltonian. The collective potential and inertial f
The region near Z=28, N=40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in $^{68}$Ni suggesting a subshell closure at N=40. Trends in nuclear masses and their derivatives provide a complementary approac
We present a comprehensive study on the low-lying states of neutron-rich Er, Yb, Hf, and W isotopes across the $N=126$ shell with a multi-reference covariant density functional theory. Beyond mean-field effects from shape mixing and symmetry restorat
Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was ana
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro