ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual Electronic Structure of Dirac Material BaMnSb$_2$ Revealed by Angle-Resolved Photoemission Spectroscopy

138   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution angle resolved photoemission measurements and band structure calculations are carried out to study the electronic structure of BaMnSb$_2$. All the observed bands are nearly linear that extend to a wide energy range. The measured Fermi surface mainly consists of one hole pocket around $Gamma$ and a strong spot at Y which are formed from the crossing points of the linear bands. The measured electronic structure of BaMnSb$_2$ is unusual and deviates strongly from the band structure calculations. These results will stimulate further efforts to theoretically understand the electronic structure of BaMnSb$_2$ and search for novel properties in this Dirac material.



قيم البحث

اقرأ أيضاً

A Weyl semimetal is a new type of topological quantum phase with intriguing physics near the Weyl nodes. Although the equilibrium state of Weyl semimetals has been investigated, the ultrafast dynamics near the Weyl node in the nonequilibrium state is still missing. Here by performing time and angle resolved photoemission spectroscopy on type-II Weyl semimetal MoTe$_2$, we reveal the dispersion of the unoccupied states and identify the Weyl node at 70 meV above E$_F$. Moreover, by tracking the ultrafast relaxation dynamics near the Weyl node upon photo-excitation with energy, momentum and temporal resolution, two intrinsic recovery timescales are observed, a fast one of 430 fs and a slow one of 4.1 ps, which are associated with hot electron cooling by optical phonon cascade emission and anharmonic decay of hot optical phonons respectively. The electron population shows a metallic response, and the two temperature model fitting of the transient electronic temperature gives an electron-phonon coupling constant of $lambdalangleOmega^2ranglesimeq32$ $textrm{meV}^2$. Our work provides important dynamic information for understanding the relaxation mechanism of a Weyl semimetal and for exploiting potential applications using ultrafast optical control.
129 - Fengfeng Zhu , W. X. Jiang , P. Li 2016
Electronic structure of single crystalline Ba(Zn$_{0.875}$Mn$_{0.125}$)$_{2}$As$_{2}$, parent compound of the recently founded high-temperature ferromagnetic semiconductor, was studied by high-resolution photoemission spectroscopy (ARPES). Through sy stematically photon energy and polarization dependent measurements, the energy bands along the out-of-plane and in-plane directions were experimentally determined. Except the localized states of Mn, the measured band dispersions agree very well with the first-principle calculations of undoped BaZn$_{2}$As$_{2}$. A new feature related to Mn 3d states was identified at the binding energies of about -1.6 eV besides the previously observed feature at about -3.3 eV. We suggest that the hybridization between Mn and As orbitals strongly enhanced the density of states around -1.6 eV. Although our resolution is much better compared with previous soft X-ray photoemission experiments, no clear hybridization gap between Mn 3d states and the valence bands proposed by previous model calculations was detected.
We have performed an angle-resolved photoemission spectroscopy (ARPES) study of BaNi$_2$P$_2$ which shows a superconducting transition at $T_c$ $sim$ 2.5 K. We observed hole and electron Fermi surfaces (FSs) around the Brillouin zone center and corne r, respectively, and the shapes of the hole FSs dramatically changed with photon energy, indicating strong three-dimensionality. The observed FSs are consistent with band-structure calculation and de Haas-van Alphen measurements. The mass enhancement factors estimated in the normal state were $m^*$/$m_b$ $leq$ 2, indicating weak electron correlation compared to typical iron-pnictide superconductors. An electron-like Fermi surface around the Z point was observed in contrast with BaNi$_2$As$_2$ and may be related to the higher $T_c$ of BaNi$_2$P$_2$.
We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe$_2$As$_2$, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 K and 300 K, corresponding to the orthorhombic antiferromagnetic phase and the tetragonal paramagnetic phase, respectively. Photon energies between 30 and 175 eV and polarizations parallel and perpendicular to the scattering plane have been used. Measurements of the Fermi surface yield two hole pockets at the $Gamma$-point and an electron pocket at each of the X-points. The topology of the pockets has been concluded from the dispersion of the spectral weight as a function of binding energy. Changes in the spectral weight at the Fermi level upon variation of the polarization of the incident photons yield important information on the orbital character of the states near the Fermi level. No differences in the electronic structure between 20 and 300 K could be resolved. The results are compared with density functional theory band structure calculations for the tetragonal paramagnetic phase.
The bulk band structure of the topological insulator sbte~ is investigated by angle-resolved photoemission spectroscopy. Of particular interest is the dispersion of the uppermost valence band with respect to the topological surface state Dirac point. The valence band maximum has been calculated to be either near the Brillouin zone centre or in a low-symmetry position in the $bar{Gamma}-bar{M}$ azimuthal direction. In order to observe the full energy range of the valence band, the strongly p-doped crystals are counter-doped by surface alkali adsorption. The data show that that the absolute valence band maximum is likely to be found at the bulk $Gamma$ point and predictions of a low-symmetry position with an energy higher than the surface Dirac point can be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا