ﻻ يوجد ملخص باللغة العربية
Various types of magnetism can appear in emerging quantum materials such as van der Waals layered ones. Here, we report the successful doping of manganese atoms into a post-transition metal dichalcogenide semiconductor: SnSe$_2$. We synthesized a single crystal Sn$_{1-x}$Mn$_x$Se$_{2}$ with $textit{x}$ = 0.04 by the chemical vapor transport (CVT) method and characterized it by x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS). The magnetic properties indicated a competition between coexisting ferromagnetic and antiferromagnetic interactions, from the temperature dependence of the magnetization, together with magnetic hysteresis loops. This means that magnetic clusters having ferromagnetic interaction within a cluster form and the short-range antiferromagnetic interaction works between the clusters; a spin-glass state appears below ~ 60 K. Furthermore, we confirmed by $textit{ab initio}$ calculations that the ferromagnetic interaction comes from the 3$textit{d}$ electrons of the manganese dopant. Our results offer a new material platform to understand and utilize the magnetism in the van der Waals layered materials.
SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interests due to its excellent thermoelectric properties and potential device applications. Experimental electronic stru
Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical and functional properties. These are hydrated analogues of the magnetically frustrated, mixed-valent manganese
As a sister compound and isostructural of MnBi2Te4, the high quality MnSb2Te4 single crystals are grown via solid-state reaction where prolonged annealing and narrow temperature window play critical roles on account of its thermal metastability. X-ra
The evolution of the optical phonons in layered semiconductor alloys SnSe1-xSx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm).
Next-generation spintronic devices will benefit from low-dimensionality, ferromagnetism, and half-metallicity, possibly controlled by electric fields. We find these technologically-appealing features to be combined with an exotic microscopic origin o