ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-glass state induced by Mn-doping into a moderate gap layered semiconductor SnSe$_2$

83   0   0.0 ( 0 )
 نشر من قبل Hongrui Huang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Various types of magnetism can appear in emerging quantum materials such as van der Waals layered ones. Here, we report the successful doping of manganese atoms into a post-transition metal dichalcogenide semiconductor: SnSe$_2$. We synthesized a single crystal Sn$_{1-x}$Mn$_x$Se$_{2}$ with $textit{x}$ = 0.04 by the chemical vapor transport (CVT) method and characterized it by x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS). The magnetic properties indicated a competition between coexisting ferromagnetic and antiferromagnetic interactions, from the temperature dependence of the magnetization, together with magnetic hysteresis loops. This means that magnetic clusters having ferromagnetic interaction within a cluster form and the short-range antiferromagnetic interaction works between the clusters; a spin-glass state appears below ~ 60 K. Furthermore, we confirmed by $textit{ab initio}$ calculations that the ferromagnetic interaction comes from the 3$textit{d}$ electrons of the manganese dopant. Our results offer a new material platform to understand and utilize the magnetism in the van der Waals layered materials.



قيم البحث

اقرأ أيضاً

SnSe, a group IV-VI monochalcogenide with layered crystal structure similar to black phosphorus, has recently attracted extensive interests due to its excellent thermoelectric properties and potential device applications. Experimental electronic stru cture of both the valence and conduction bands is critical for understanding the effects of hole versus electron doping on the thermoelectric properties, and to further reveal possible change of the band gap upon doping. Here, we report the multivalley valence bands with a large effective mass on semiconducting SnSe crystals and reveal single-valley conduction bands through electron doping to provide a complete picture of the thermoelectric physics. Moreover, by electron doping through potassium deposition, the band gap of SnSe can be widely tuned from 1.2 eV to 0.4 eV, providing new opportunities for tunable electronic and optoelectronic devices.
Birnessite compounds are stable across a wide range of compositions that produces a remarkable diversity in their physical, electrochemical and functional properties. These are hydrated analogues of the magnetically frustrated, mixed-valent manganese oxide structures, with general formula, NaxMnO2. Here we demonstrate that the direct hydration of layered rock-salt type a-NaMnO2, with the geometrically frustrated triangular lattice topology, yields the birnessite type oxide, Na0.36MnO2 0.2H2O, transforming its magnetic properties. This compound has a much-expanded interlayer spacing compared to its parent a-NaMnO2 compound. We show that while the parent a-NaMnO2 possesses a Neel temperature of 45 K as a result of broken symmetry in the Mn3+ sub-lattice, the hydrated derivative undergoes collective spin-freezing at 29 K within the Mn3+/Mn4+ sub-lattice. Scaling-law analysis of the frequency dispersion of the AC susceptibility, as well as the temperature-dependent, low-field DC magnetization confirm a cooperative spin-glass state of strongly interacting spins. This is supported by complementary spectroscopic analysis (HAADF-STEM, EDS, EELS) as well as by a structural investigation (high-resolution TEM, X-ray and neutron powder diffraction) that yield insights into the chemical and atomic structure modifications. We conclude that the spin-glass state in birnessite is driven by the spin-frustration imposed by the underlying triangular lattice topology that is further enhanced by the in-plane bond-disorder generated by the mixed-valent character of manganese in the layers.
158 - Hao Li , Yaoxin Li , Yu-Kun Lian 2021
As a sister compound and isostructural of MnBi2Te4, the high quality MnSb2Te4 single crystals are grown via solid-state reaction where prolonged annealing and narrow temperature window play critical roles on account of its thermal metastability. X-ra y diffraction analysis on MnSb2Te4 single crystals reveals pronounced cation intermixing, 28.9(7)% Sb antisite defects on the Mn (3a) site and 19.3(6)% Mn antisite defects on the Sb (6c) site, compared with MnBi2Te4. Unlike antiferromagnetic (AFM) nature MnBi2Te4, MnSb2Te4 contains magnetic and antiferromagnetic competition and exhibits a spin glass (SG) state below 24 K. Its magnetic hysteresis, anisotropy, and relaxation process are investigated in detail with DC and AC magnetization measurements. Moreover, anomalous Hall effect as a p-type conductor is demonstrated through transport measurements. This work grants MnSb2Te4 a possible access to the future exploration of exotic quantum physics by removing the odd/even layer number restraint in intrinsic AFM MnBi2Te4-family materials as a result of the crossover between its magnetism and potential topology in the Sb-Te layer.
The evolution of the optical phonons in layered semiconductor alloys SnSe1-xSx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm). The polarization dependences of the phonon modes are compared with transmission electron diffraction measurements to determine the crystallographic orientation of the samples. Some of the Raman modes show significant variation in their polarization behavior depending on the excitation wavelengths. It is established that the maximum intensity direction of the Ag2 mode of SnSe1-xSx (0<=x<=1) does not depend on the excitation wavelength and corresponds to the armchair direction. It is additionally found that the lower-frequency Raman modes of Ag1, Ag2 and B3g1 in the alloys show the typical one-mode behavior of optical phonons, whereas the higher-frequency modes of B3g2, Ag3 and Ag4 show two-mode behavior.
Next-generation spintronic devices will benefit from low-dimensionality, ferromagnetism, and half-metallicity, possibly controlled by electric fields. We find these technologically-appealing features to be combined with an exotic microscopic origin o f magnetism in doped CdOHCl, a van der Waals material from which 2D layers may be exfoliated. By means of first principles simulations, we predict homogeneous hole-doping to give rise to $p$-band magnetism in both the bulk and monolayer phases and interpret our findings in terms of Stoner instability: as the Fermi level is tuned via hole-doping through singularities in the 2D-like density of states, ferromagnetism develops with large saturation magnetization of 1 $mu_B$ per hole, leading to a half-metallic behaviour for layer carrier densities of the order of 10$^{14}$ cm$^{-2}$. Furthermore, we put forward electrostatic doping as an additional handle to induce magnetism in monolayers and bilayers of CdOHCl. Upon application of critical electric fields perpendicular to atomically-thin-films (as low as 0.2 V/$A{deg}$ and 0.5 V/$A{deg}$ in the bilayer and monolayer case, respectively), we envisage the emergence of a magnetic half-metallic state. The different behaviour of monolayer vs bilayer systems, as well as an observed asymmetric response to positive and negative electric fields in bilayers, are interpreted in terms of intrinsic polarity of CdOHCl atomic stacks, a distinctive feature of the material. In perspective, given the experimentally accessible magnitude of critical fields in bilayer of CdOHCl, one can envisage $p$ band magnetism to be exploited in miniaturized spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا