ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical phonons of SnSe(1-x)Sx layered semiconductor alloys

294   0   0.0 ( 0 )
 نشر من قبل Tharith Sriv
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of the optical phonons in layered semiconductor alloys SnSe1-xSx is studied as a function of the composition by using polarized Raman spectroscopy with six different excitation wavelengths (784.8, 632.8, 532, 514.5, 488, and 441.6 nm). The polarization dependences of the phonon modes are compared with transmission electron diffraction measurements to determine the crystallographic orientation of the samples. Some of the Raman modes show significant variation in their polarization behavior depending on the excitation wavelengths. It is established that the maximum intensity direction of the Ag2 mode of SnSe1-xSx (0<=x<=1) does not depend on the excitation wavelength and corresponds to the armchair direction. It is additionally found that the lower-frequency Raman modes of Ag1, Ag2 and B3g1 in the alloys show the typical one-mode behavior of optical phonons, whereas the higher-frequency modes of B3g2, Ag3 and Ag4 show two-mode behavior.



قيم البحث

اقرأ أيضاً

Various types of magnetism can appear in emerging quantum materials such as van der Waals layered ones. Here, we report the successful doping of manganese atoms into a post-transition metal dichalcogenide semiconductor: SnSe$_2$. We synthesized a sin gle crystal Sn$_{1-x}$Mn$_x$Se$_{2}$ with $textit{x}$ = 0.04 by the chemical vapor transport (CVT) method and characterized it by x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS). The magnetic properties indicated a competition between coexisting ferromagnetic and antiferromagnetic interactions, from the temperature dependence of the magnetization, together with magnetic hysteresis loops. This means that magnetic clusters having ferromagnetic interaction within a cluster form and the short-range antiferromagnetic interaction works between the clusters; a spin-glass state appears below ~ 60 K. Furthermore, we confirmed by $textit{ab initio}$ calculations that the ferromagnetic interaction comes from the 3$textit{d}$ electrons of the manganese dopant. Our results offer a new material platform to understand and utilize the magnetism in the van der Waals layered materials.
For powder samples of CuAl$_{1-x}$Fe$_x$O$_2$ ($x =$ 0, 0.01, 0.05, and 0.1), measured optical properties are compared with model simulations and phonon spectra are compared with simulations based on weighted dynamical matrix approach.
Confined optical phonons are discussed for a semiconductor nanowire of the Ge (Si)prototype on the basis of a theory developed some years ago. In the present work this theory is adapted to a non polar material and generalized to the case when the pho non dispersion law involves both linear and quadratic terms in the wave vector. The treatment is considered along the lines of a continuous medium model and leads to a system of coupled differential equations describing oscillations of mixed nature. The nanowire is modelled in the form of an infinite circular cylinder and the solutions of the fundamental equations are found. We are thus led to a description of long wavelength optical phonons, which should show a closer agreement with experimental data and with calculations along atomistic models. The presented theory is applied to the calculation of optical phonons in a Ge nanowire. We have found the dispersion curves for various optical phonon modes. We also normalize the modes and discuss the electron-phonon interaction within the deformation potential approximation.
128 - J.B.A. Hamer 2007
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetos tructural phase transition in the range x=0.04 to x=0.055, similar to that observed in CoMnGe under hydrostatic pressure. From magnetisation measurements, we show that the isothermal entropy change associated with the magnetostructural transition can be as high as 4.5 J/(K kg) in a field of 1 Tesla. However, the large thermal hysteresis in this transition (~20 K) will limit its straightforward use in a magnetocaloric device.
107 - T. Wojtowicz , W.L. Lim , X. Liu 2003
We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnet ic circular dichroism, and the magneto-optical Kerr effect. These data clearly indicate that In(1-x)Mn(x)Sb possesses all the attributes of a system with carrier-mediated FM interactions, including well-defined hysteresis loops, a cusp in the temperature dependence of the resistivity, strong negative magnetoresistance, and a large anomalous Hall effect. The Curie temperatures in samples investigated thus far range up to 8.5 K, which are consistent with a mean-field-theory simulation of the carrier-induced ferromagnetism based on the 8-band effective band-orbital method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا