ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured in Space, Randomized in Time: Leveraging Dropout in RNNs for Efficient Training

324   0   0.0 ( 0 )
 نشر من قبل Anup Sarma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recurrent Neural Networks (RNNs), more specifically their Long Short-Term Memory (LSTM) variants, have been widely used as a deep learning tool for tackling sequence-based learning tasks in text and speech. Training of such LSTM applications is computationally intensive due to the recurrent nature of hidden state computation that repeats for each time step. While sparsity in Deep Neural Nets has been widely seen as an opportunity for reducing computation time in both training and inference phases, the usage of non-ReLU activation in LSTM RNNs renders the opportunities for such dynamic sparsity associated with neuron activation and gradient values to be limited or non-existent. In this work, we identify dropout induced sparsity for LSTMs as a suitable mode of computation reduction. Dropout is a widely used regularization mechanism, which randomly drops computed neuron values during each iteration of training. We propose to structure dropout patterns, by dropping out the same set of physical neurons within a batch, resulting in column (row) level hidden state sparsity, which are well amenable to computation reduction at run-time in general-purpose SIMD hardware as well as systolic arrays. We conduct our experiments for three representative NLP tasks: language modelling on the PTB dataset, OpenNMT based machine translation using the IWSLT De-En and En-Vi datasets, and named entity recognition sequence labelling using the CoNLL-2003 shared task. We demonstrate that our proposed approach can be used to translate dropout-based computation reduction into reduced training time, with improvement ranging from 1.23x to 1.64x, without sacrificing the target metric.



قيم البحث

اقرأ أيضاً

Despite the widespread application of recurrent neural networks (RNNs) across a variety of tasks, a unified understanding of how RNNs solve these tasks remains elusive. In particular, it is unclear what dynamical patterns arise in trained RNNs, and h ow those patterns depend on the training dataset or task. This work addresses these questions in the context of a specific natural language processing task: text classification. Using tools from dynamical systems analysis, we study recurrent networks trained on a battery of both natural and synthetic text classification tasks. We find the dynamics of these trained RNNs to be both interpretable and low-dimensional. Specifically, across architectures and datasets, RNNs accumulate evidence for each class as they process the text, using a low-dimensional attractor manifold as the underlying mechanism. Moreover, the dimensionality and geometry of the attractor manifold are determined by the structure of the training dataset; in particular, we describe how simple word-count statistics computed on the training dataset can be used to predict these properties. Our observations span multiple architectures and datasets, reflecting a common mechanism RNNs employ to perform text classification. To the degree that integration of evidence towards a decision is a common computational primitive, this work lays the foundation for using dynamical systems techniques to study the inner workings of RNNs.
In this paper we address the problem of fine-tuned text generation with a limited computational budget. For that, we use a well-performing text generative adversarial network (GAN) architecture - Diversity-Promoting GAN (DPGAN), and attempted a drop- in replacement of the LSTM layer with a self-attention-based Transformer layer in order to leverage their efficiency. The resulting Self-Attention DPGAN (SADPGAN) was evaluated for performance, quality and diversity of generated text and stability. Computational experiments suggested that a transformer architecture is unable to drop-in replace the LSTM layer, under-performing during the pre-training phase and undergoing a complete mode collapse during the GAN tuning phase. Our results suggest that the transformer architecture need to be adapted before it can be used as a replacement for RNNs in text-generating GANs.
Dropout is a popular technique for regularizing artificial neural networks. Dropout networks are generally trained by minibatch gradient descent with a dropout mask turning off some of the units---a different pattern of dropout is applied to every sa mple in the minibatch. We explore a very simple alternative to the dropout mask. Instead of masking dropped out units by setting them to zero, we perform matrix multiplication using a submatrix of the weight matrix---unneeded hidden units are never calculated. Performing dropout batchwise, so that one pattern of dropout is used for each sample in a minibatch, we can substantially reduce training times. Batchwise dropout can be used with fully-connected and convolutional neural networks.
167 - David Lomet 2020
A log structured store uses a single write I/O for a number of diverse and non-contiguous pages within a large buffer instead of using a write I/O for each page separately. This requires that pages be relocated on every write, because pages are never updated in place. Instead, pages are dynamically remapped on every write. Log structuring was invented for and used initially in file systems. Today, a form of log structuring is used in SSD controllers because an SSD requires the erasure of a large block of pages before flash storage can be reused. No update-in-place requires that the storage for out-of-date pages be reclaimed (garbage collected or cleaned). We analyze cleaning performance and introduce a cleaning strategy that uses a new way to prioritize the order in which stale pages are garbage collected. Our cleaning strategy approximates an optimal cleaning strategy. Simulation studies confirm the results of the analysis. This strategy is a significant improvement over previous cleaning strategies.
Approximate inference in deep Bayesian networks exhibits a dilemma of how to yield high fidelity posterior approximations while maintaining computational efficiency and scalability. We tackle this challenge by introducing a novel variational structur ed approximation inspired by the Bayesian interpretation of Dropout regularization. Concretely, we focus on the inflexibility of the factorized structure in Dropout posterior and then propose an improved method called Variational Structured Dropout (VSD). VSD employs an orthogonal transformation to learn a structured representation on the variational noise and consequently induces statistical dependencies in the approximate posterior. Theoretically, VSD successfully addresses the pathologies of previous Variational Dropout methods and thus offers a standard Bayesian justification. We further show that VSD induces an adaptive regularization term with several desirable properties which contribute to better generalization. Finally, we conduct extensive experiments on standard benchmarks to demonstrate the effectiveness of VSD over state-of-the-art variational methods on predictive accuracy, uncertainty estimation, and out-of-distribution detection.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا