ﻻ يوجد ملخص باللغة العربية
Dropout is a popular technique for regularizing artificial neural networks. Dropout networks are generally trained by minibatch gradient descent with a dropout mask turning off some of the units---a different pattern of dropout is applied to every sample in the minibatch. We explore a very simple alternative to the dropout mask. Instead of masking dropped out units by setting them to zero, we perform matrix multiplication using a submatrix of the weight matrix---unneeded hidden units are never calculated. Performing dropout batchwise, so that one pattern of dropout is used for each sample in a minibatch, we can substantially reduce training times. Batchwise dropout can be used with fully-connected and convolutional neural networks.
Compared to Multilayer Neural Networks with real weights, Binary Multilayer Neural Networks (BMNNs) can be implemented more efficiently on dedicated hardware. BMNNs have been demonstrated to be effective on binary classification tasks with Expectatio
Computation using brain-inspired spiking neural networks (SNNs) with neuromorphic hardware may offer orders of magnitude higher energy efficiency compared to the current analog neural networks (ANNs). Unfortunately, training SNNs with the same number
Deep spiking neural networks (SNNs) hold great potential for improving the latency and energy efficiency of deep neural networks through event-based computation. However, training such networks is difficult due to the non-differentiable nature of asy
Recurrent Neural Networks (RNNs), more specifically their Long Short-Term Memory (LSTM) variants, have been widely used as a deep learning tool for tackling sequence-based learning tasks in text and speech. Training of such LSTM applications is compu
The state-of-the-art (SOTA) for mixed precision training is dominated by variants of low precision floating point operations, and in particular, FP16 accumulating into FP32 Micikevicius et al. (2017). On the other hand, while a lot of research has al