ﻻ يوجد ملخص باللغة العربية
There has been a recent surge of interest in nonparametric bandit algorithms based on subsampling. One drawback however of these approaches is the additional complexity required by random subsampling and the storage of the full history of rewards. Our first contribution is to show that a simple deterministic subsampling rule, proposed in the recent work of Baudry et al. (2020) under the name of last-block subsampling, is asymptotically optimal in one-parameter exponential families. In addition, we prove that these guarantees also hold when limiting the algorithm memory to a polylogarithmic function of the time horizon. These findings open up new perspectives, in particular for non-stationary scenarios in which the arm distributions evolve over time. We propose a variant of the algorithm in which only the most recent observations are used for subsampling, achieving optimal regret guarantees under the assumption of a known number of abrupt changes. Extensive numerical simulations highlight the merits of this approach, particularly when the changes are not only affecting the means of the rewards.
Consider the following abstract coin tossing problem: Given a set of $n$ coins with unknown biases, find the most biased coin using a minimal number of coin tosses. This is a common abstraction of various exploration problems in theoretical computer
We study a structured variant of the multi-armed bandit problem specified by a set of Bernoulli distributions $ u != !( u_{a,b})_{a in mathcal{A}, b in mathcal{B}}$ with means $(mu_{a,b})_{a in mathcal{A}, b in mathcal{B}}!in![0,1]^{mathcal{A}timesm
This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This appr
Current implementations of pseudo-Boolean (PB) solvers working on native PB constraints are based on the CDCL architecture which empowers highly efficient modern SAT solvers. In particular, such PB solvers not only implement a (cutting-planes-based)
We consider a multi-armed bandit problem specified by a set of Gaussian or Bernoulli distributions endowed with a unimodal structure. Although this problem has been addressed in the literature (Combes and Proutiere, 2014), the state-of-the-art algori