ﻻ يوجد ملخص باللغة العربية
This paper focuses on building personalized player models solely from player behavior in the context of adaptive games. We present two main contributions: The first is a novel approach to player modeling based on multi-armed bandits (MABs). This approach addresses, at the same time and in a principled way, both the problem of collecting data to model the characteristics of interest for the current player and the problem of adapting the interactive experience based on this model. Second, we present an approach to evaluating and fine-tuning these algorithms prior to generating data in a user study. This is an important problem, because conducting user studies is an expensive and labor-intensive process; therefore, an ability to evaluate the algorithms beforehand can save a significant amount of resources. We evaluate our approach in the context of modeling players social comparison orientation (SCO) and present empirical results from both simulations and real players.
We introduce a framework for decentralized online learning for multi-armed bandits (MAB) with multiple cooperative players. The reward obtained by the players in each round depends on the actions taken by all the players. Its a team setting, and the
Multi-player Multi-Armed Bandits (MAB) have been extensively studied in the literature, motivated by applications to Cognitive Radio systems. Driven by such applications as well, we motivate the introduction of several levels of feedback for multi-pl
We consider a fully decentralized multi-player stochastic multi-armed bandit setting where the players cannot communicate with each other and can observe only their own actions and rewards. The environment may appear differently to different players,
In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit algorithms with a small finite strategy set is
Games with large branching factors pose a significant challenge for game tree search algorithms. In this paper, we address this problem with a sampling strategy for Monte Carlo Tree Search (MCTS) algorithms called {em na{i}ve sampling}, based on a va