ﻻ يوجد ملخص باللغة العربية
Underwater image restoration is of significant importance in unveiling the underwater world. Numerous techniques and algorithms have been developed in the past decades. However, due to fundamental difficulties associated with imaging/sensing, lighting, and refractive geometric distortions, in capturing clear underwater images, no comprehensive evaluations have been conducted of underwater image restoration. To address this gap, we have constructed a large-scale real underwater image dataset, dubbed `HICRD (Heron Island Coral Reef Dataset), for the purpose of benchmarking existing methods and supporting the development of new deep-learning based methods. We employ accurate water parameter (diffuse attenuation coefficient) in generating reference images. There are 2000 reference restored images and 6003 original underwater images in the unpaired training set. Further, we present a novel method for underwater image restoration based on unsupervised image-to-image translation framework. Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method. Our code and dataset are publicly available at GitHub.
In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passiv
The availability of large-scale datasets has helped unleash the true potential of deep convolutional neural networks (CNNs). However, for the single-image denoising problem, capturing a real dataset is an unacceptably expensive and cumbersome procedu
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent perceptual IR algorithms based on generative adversarial networks (GANs) have brought in significant improvement on visual
Image quality assessment (IQA) is the key factor for the fast development of image restoration (IR) algorithms. The most recent IR methods based on Generative Adversarial Networks (GANs) have achieved significant improvement in visual performance, bu
Single image super-resolution (SISR), which aims to reconstruct a high-resolution (HR) image from a low-resolution (LR) observation, has been an active research topic in the area of image processing in recent decades. Particularly, deep learning-base