ترغب بنشر مسار تعليمي؟ اضغط هنا

UWGAN: Underwater GAN for Real-world Underwater Color Restoration and Dehazing

63   0   0.0 ( 0 )
 نشر من قبل Wang Nan
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passive nature. However, wavelength-dependent light attenuation and back-scattering result in color distortion and haze effect, which degrade the visibility of images. To address this problem, firstly, we proposed an unsupervised generative adversarial network (GAN) for generating realistic underwater images (color distortion and haze effect) from in-air image and depth map pairs based on improved underwater imaging model. Secondly, U-Net, which is trained efficiently using synthetic underwater dataset, is adopted for color restoration and dehazing. Our model directly reconstructs underwater clear images using end-to-end autoencoder networks, while maintaining scene content structural similarity. The results obtained by our method were compared with existing methods qualitatively and quantitatively. Experimental results obtained by the proposed model demonstrate well performance on open real-world underwater datasets, and the processing speed can reach up to 125FPS running on one NVIDIA 1060 GPU. Source code, sample datasets are made publicly available at https://github.com/infrontofme/UWGAN_UIE.



قيم البحث

اقرأ أيضاً

Underwater image restoration is of significant importance in unveiling the underwater world. Numerous techniques and algorithms have been developed in the past decades. However, due to fundamental difficulties associated with imaging/sensing, lightin g, and refractive geometric distortions, in capturing clear underwater images, no comprehensive evaluations have been conducted of underwater image restoration. To address this gap, we have constructed a large-scale real underwater image dataset, dubbed `HICRD (Heron Island Coral Reef Dataset), for the purpose of benchmarking existing methods and supporting the development of new deep-learning based methods. We employ accurate water parameter (diffuse attenuation coefficient) in generating reference images. There are 2000 reference restored images and 6003 original underwater images in the unpaired training set. Further, we present a novel method for underwater image restoration based on unsupervised image-to-image translation framework. Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images. Extensive experiments with comparisons to recent approaches further demonstrate the superiority of our proposed method. Our code and dataset are publicly available at GitHub.
219 - Risheng Liu , Xin Fan , Ming Zhu 2019
Underwater image enhancement is such an important low-level vision task with many applications that numerous algorithms have been proposed in recent years. These algorithms developed upon various assumptions demonstrate successes from various aspects using different data sets and different metrics. In this work, we setup an undersea image capturing system, and construct a large-scale Real-world Underwater Image Enhancement (RUIE) data set divided into three subsets. The three subsets target at three challenging aspects for enhancement, i.e., image visibility quality, color casts, and higher-level detection/classification, respectively. We conduct extensive and systematic experiments on RUIE to evaluate the effectiveness and limitations of various algorithms to enhance visibility and correct color casts on images with hierarchical categories of degradation. Moreover, underwater image enhancement in practice usually serves as a preprocessing step for mid-level and high-level vision tasks. We thus exploit the object detection performance on enhanced images as a brand new task-specific evaluation criterion. The findings from these evaluations not only confirm what is commonly believed, but also suggest promising solutions and new directions for visibility enhancement, color correction, and object detection on real-world underwater images.
Low visual quality has prevented underwater robotic vision from a wide range of applications. Although several algorithms have been developed, real-time and adaptive methods are deficient for real-world tasks. In this paper, we address this difficult y based on generative adversarial networks (GAN), and propose a GAN-based restoration scheme (GAN-RS). In particular, we develop a multi-branch discriminator including an adversarial branch and a critic branch for the purpose of simultaneously preserving image content and removing underwater noise. In addition to adversarial learning, a novel dark channel prior loss also promotes the generator to produce realistic vision. More specifically, an underwater index is investigated to describe underwater properties, and a loss function based on the underwater index is designed to train the critic branch for underwater noise suppression. Through extensive comparisons on visual quality and feature restoration, we confirm the superiority of the proposed approach. Consequently, the GAN-RS can adaptively improve underwater visual quality in real time and induce an overall superior restoration performance. Finally, a real-world experiment is conducted on the seabed for grasping marine products, and the results are quite promising. The source code is publicly available at https://github.com/SeanChenxy/GAN_RS.
This work presents an unsupervised deep learning scheme that exploiting high-dimensional assisted score-based generative model for color image restoration tasks. Considering that the sample number and internal dimension in score-based generative mode l have key influence on estimating the gradients of data distribution, two different high-dimensional ways are proposed: The channel-copy transformation increases the sample number and the pixel-scale transformation decreases feasible space dimension. Subsequently, a set of high-dimensional tensors represented by these transformations are used to train the network through denoising score matching. Then, sampling is performed by annealing Langevin dynamics and alternative data-consistency update. Furthermore, to alleviate the difficulty of learning high-dimensional representation, a progressive strategy is proposed to leverage the performance. The proposed unsupervised learning and iterative restoration algo-rithm, which involves a pre-trained generative network to obtain prior, has transparent and clear interpretation compared to other data-driven approaches. Experimental results on demosaicking and inpainting conveyed the remarkable performance and diversity of our proposed method.
68 - Minghan Fu , Huan Liu , Yankun Yu 2021
Hazy images are often subject to color distortion, blurring, and other visible quality degradation. Some existing CNN-based methods have great performance on removing homogeneous haze, but they are not robust in non-homogeneous case. The reasons are mainly in two folds. Firstly, due to the complicated haze distribution, texture details are easy to be lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing wavelet transform in DWT branch, our proposed method can retain more high-frequency knowledge in feature maps. In order to prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا