ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Inflation at NNLO

84   0   0.0 ( 0 )
 نشر من قبل Timothy Cohen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic Inflation is an important framework for understanding the physics of de Sitter space and the phenomenology of inflation. In the leading approximation, this approach results in a Fokker-Planck equation that calculates the probability distribution for a light scalar field as a function of time. Despite its successes, the quantum field theoretic origins and the range of validity for this equation have remained elusive, and establishing a formalism to systematically incorporate higher order effects has been an area of active study. In this paper, we calculate the next-to-next-to-leading order (NNLO) corrections to Stochastic Inflation using Soft de Sitter Effective Theory (SdSET). In this effective description, Stochastic Inflation manifests as the renormalization group evolution of composite operators. The leading impact of non-Gaussian quantum fluctuations appears at NNLO, which is presented here for the first time; we derive the coefficient of this term from a two-loop anomalous dimension calculation within SdSET. We solve the resulting equation to determine the NNLO equilibrium distribution and the low-lying relaxation eigenvalues. In the process, we must match the UV theory onto SdSET at one-loop order, which provides a non-trivial confirmation that the separation into Wilson-coefficient corrections and contributions to initial conditions persists beyond tree level. Furthermore, these results illustrate how the naive factorization of time and momentum integrals in SdSET no longer holds in the presence of logarithmic divergences. It is these effects that ultimately give rise to the renormalization group flow that yields Stochastic Inflation.



قيم البحث

اقرأ أيضاً

We derive the stochastic description of a massless, interacting scalar field in de Sitter space directly from the quantum theory. This is done by showing that the density matrix for the effective theory of the long wavelength fluctuations of the fiel d obeys a quantum version of the Fokker-Planck equation. This equation has a simple connection with the standard Fokker-Planck equation of the classical stochastic theory, which can be generalised to any order in perturbation theory. We illustrate this formalism in detail for the theory of a massless scalar field with a quartic interaction.
We constructed a model of natural inflation in the context of $alpha$-attractor supergravity, in which both the dilaton field and the axion field are light during inflation, and the inflaton may be a combination of the two. The T-model version of thi s theory is defined on the Poincare disk with radius |Z| = 1. It describes a Mexican hat potential with the flat axion direction corresponding to a circle of radius |Z| < 1. The axion decay constant $f_{a}$ in this theory can be exponentially large because of the hyperbolic geometry of the Poincare disk. Depending on initial conditions, this model may describe $alpha$-attractor inflation driven by the radial component of the inflaton field, natural inflation driven by the axion field, or a sequence of these two regimes. We also construct the E-model version of this theory, which has similar properties. In addition, we describe generalized $alpha$-attractor models where the potential can be singular at the boundary of the moduli space, and show that they can provide a simple solution for the problem of initial conditions for the models with plateau potentials.
224 - Benjamin Shlaer 2012
We illustrate a framework for constructing models of chaotic inflation where the inflaton is the position of a D3 brane along the universal cover of a string compactification. In our scenario, a brane rolls many times around a non-trivial one-cycle, thereby unwinding a Ramond-Ramond flux. These flux monodromies are similar in spirit to the monodromies of Silverstein, Westphal, and McAllister, and their four-dimensional description is that of Kaloper and Sorbo. Assuming moduli stabilization is rigid enough, the large-field inflationary potential is protected from radiative corrections by a discrete shift symmetry.
164 - Seoktae Koh 2009
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field potential is required to satisfy the three minimal conditions for successful inflation: i) $rho>0$, ii) $rho+3P < 0$ and iii) the slow-roll conditions. As an example, we consider the massive vector potential and small field type potential as like in scalar driven inflation.
77 - Marco Scalisi 2016
In this PhD thesis, we investigate generic features of inflation which are strictly related to fundamental aspects of UV-physics scenarios, such as string theory or supergravity. After a short introduction to standard and inflationary cosmology, we p resent our research findings. On the one hand, we show that focusing on universality properties of inflation can yield surprisingly stringent bounds on its dynamics. This approach allows us to identify the regime where the inflationary field range is uniquely determined by both the tensor-to-scalar ratio and the spectral index. Then, we derive a novel field-range bound, which is two orders of magnitude stronger than the original one derived by Lyth. On the other hand, we discuss the embedding of inflation in supergravity and prove that non-trivial hyperbolic Kahler geometries induce an attractor for the inflationary observables: the spectral tilt tends automatically to the center of the Planck dome whereas the amount of primordial gravitational waves is directly controlled by curvature of the internal manifold. We identify the origin of this attractor mechanism in the so-called $alpha$-scale supergravity model. Finally, we show how the inclusion of a nilpotent sector, allowing for a unified description of inflation and dark energy, implies an enhancement of the attractor nature of the theory. The main results of this thesis have been already published elsewhere. However, here we pay special attention to present them in a comprehensive way and provide the reader with the necessary background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا