ﻻ يوجد ملخص باللغة العربية
The newly proposed island formula for entanglement entropy of Hawking radiation is applied to spherically symmetric 4-dimensional eternal Kaluza-Klein (KK) black holes (BHs). The charge $Q$ of a KK BH quantifies its deviation from a Schwarzschild BH. The impact of $Q$ on the island is studied at both early and late times. The early size of the island, emph{if exists}, is of order Planck length $ell_{mathrm{P}}$, and will be shortened by $Q$ by a factor $1/sqrt2$ at most. The late-time island, whose boundary is on the outside but within a Planckian distance of the horizon, is slightly extended. While the no-island entropy grows linearly, the late-time entanglement entropy is given by island configuration with twice the Bekenstein-Hawking entropy. Thus we reproduce the Page curve for the eternal KK BHs. Compared with Schwarzschild results, the Page time and the scrambling time are marginally delayed. Moreover, the higher-dimensional generalization is presented. Skeptically, in both early and late times, there are Planck length scales involved, in which a semi-classical description of quantum fields breaks down.
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, s
We investigate five-dimensional vacuum solutions which represent rotating multi-black holes in asymptotically Kaluza-Klein spacetimes. We show that multi-black holes rotate maximally along extra dimension, and stationary configurations in vacuum are
We examine an exact solution which represents a charged black hole in a Kaluza-Klein universe in the five-dimensional Einstein-Maxwell theory. The spacetime approaches to the five-dimensional Kasner solution that describes expanding three dimensions
We obtain new five-dimensional supersymmetric rotating multi-Kaluza-Klein black hole solutions with the Godel parameter in the Einstein-Maxwell system with a Chern-Simons term. These solutions have no closed timelike curve outside the black hole hori
We study gravitational and electromagnetic perturbation around the squashed Kaluza-Klein black holes with charge. Since the black hole spacetime focused on this paper have $SU(2) times U(1) simeq U(2)$ symmetry, we can separate the variables of the e