ﻻ يوجد ملخص باللغة العربية
The stability of squashed Kaluza-Klein black holes is studied. The squashed Kaluza-Klein black hole looks like five dimensional black hole in the vicinity of horizon and four dimensional Minkowski spacetime with a circle at infinity. In this sense, squashed Kaluza-Klein black holes can be regarded as black holes in the Kaluza-Klein spacetimes. Using the symmetry of squashed Kaluza-Klein black holes, $SU(2)times U(1)simeq U(2)$, we obtain master equations for a part of the metric perturbations relevant to the stability. The analysis based on the master equations gives a strong evidence for the stability of squashed Kaluza-Klein black holes. Hence, the squashed Kaluza-Klein black holes deserve to be taken seriously as realistic black holes in the Kaluza-Klein spacetime.
We study gravitational and electromagnetic perturbation around the squashed Kaluza-Klein black holes with charge. Since the black hole spacetime focused on this paper have $SU(2) times U(1) simeq U(2)$ symmetry, we can separate the variables of the e
We investigate the geodetic precession effect of a parallely transported spin-vector along a circular geodesic in the five-dimensional squashed Kaluza-Klein black hole spacetime. Then we derive the higher-dimensional correction of the precession angl
We consider the Hawking radiation by the tunneling of charged fermions and charged scalar particles from the five-dimensional charged static squashed Kaluza-Klein black hole based on the generalized uncertainty principle. We derive corrections of the
The newly proposed island formula for entanglement entropy of Hawking radiation is applied to spherically symmetric 4-dimensional eternal Kaluza-Klein (KK) black holes (BHs). The charge $Q$ of a KK BH quantifies its deviation from a Schwarzschild BH.
We discuss Hawking radiation from a five-dimensional squashed Kaluza-Klein black hole on the basis of the tunneling mechanism. A simple manner, which was recently suggested by Umetsu, is possible to extend the original derivation by Parikh and Wilcze