ترغب بنشر مسار تعليمي؟ اضغط هنا

View Generalization for Single Image Textured 3D Models

70   0   0.0 ( 0 )
 نشر من قبل Anand Bhattad
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans can easily infer the underlying 3D geometry and texture of an object only from a single 2D image. Current computer vision methods can do this, too, but suffer from view generalization problems - the models inferred tend to make poor predictions of appearance in novel views. As for generalization problems in machine learning, the difficulty is balancing single-view accuracy (cf. training error; bias) with novel view accuracy (cf. test error; variance). We describe a class of models whose geometric rigidity is easily controlled to manage this tradeoff. We describe a cycle consistency loss that improves view generalization (roughly, a model from a generated view should predict the original view well). View generalization of textures requires that models share texture information, so a car seen from the back still has headlights because other cars have headlights. We describe a cycle consistency loss that encourages model textures to be aligned, so as to encourage sharing. We compare our method against the state-of-the-art method and show both qualitative and quantitative improvements.



قيم البحث

اقرأ أيضاً

We present Worldsheet, a method for novel view synthesis using just a single RGB image as input. The main insight is that simply shrink-wrapping a planar mesh sheet onto the input image, consistent with the learned intermediate depth, captures underl ying geometry sufficient to generate photorealistic unseen views with large viewpoint changes. To operationalize this, we propose a novel differentiable texture sampler that allows our wrapped mesh sheet to be textured and rendered differentiably into an image from a target viewpoint. Our approach is category-agnostic, end-to-end trainable without using any 3D supervision, and requires a single image at test time. We also explore a simple extension by stacking multiple layers of Worldsheets to better handle occlusions. Worldsheet consistently outperforms prior state-of-the-art methods on single-image view synthesis across several datasets. Furthermore, this simple idea captures novel views surprisingly well on a wide range of high-resolution in-the-wild images, converting them into navigable 3D pop-ups. Video results and code are available at https://worldsheet.github.io.
We propose a Transformer-based framework for 3D human texture estimation from a single image. The proposed Transformer is able to effectively exploit the global information of the input image, overcoming the limitations of existing methods that are s olely based on convolutional neural networks. In addition, we also propose a mask-fusion strategy to combine the advantages of the RGB-based and texture-flow-based models. We further introduce a part-style loss to help reconstruct high-fidelity colors without introducing unpleasant artifacts. Extensive experiments demonstrate the effectiveness of the proposed method against state-of-the-art 3D human texture estimation approaches both quantitatively and qualitatively.
275 - Bowen Wen , Kostas Bekris 2021
Tracking the 6D pose of objects in video sequences is important for robot manipulation. Most prior efforts, however, often assume that the target objects CAD model, at least at a category-level, is available for offline training or during online temp late matching. This work proposes BundleTrack, a general framework for 6D pose tracking of novel objects, which does not depend upon 3D models, either at the instance or category-level. It leverages the complementary attributes of recent advances in deep learning for segmentation and robust feature extraction, as well as memory-augmented pose graph optimization for spatiotemporal consistency. This enables long-term, low-drift tracking under various challenging scenarios, including significant occlusions and object motions. Comprehensive experiments given two public benchmarks demonstrate that the proposed approach significantly outperforms state-of-art, category-level 6D tracking or dynamic SLAM methods. When compared against state-of-art methods that rely on an object instance CAD model, comparable performance is achieved, despite the proposed methods reduced information requirements. An efficient implementation in CUDA provides a real-time performance of 10Hz for the entire framework. Code is available at: https://github.com/wenbowen123/BundleTrack
3D face reconstruction from a single image is a task that has garnered increased interest in the Computer Vision community, especially due to its broad use in a number of applications such as realistic 3D avatar creation, pose invariant face recognit ion and face hallucination. Since the introduction of the 3D Morphable Model in the late 90s, we witnessed an explosion of research aiming at particularly tackling this task. Nevertheless, despite the increasing level of detail in the 3D face reconstructions from single images mainly attributed to deep learning advances, finer and highly deformable components of the face such as the tongue are still absent from all 3D face models in the literature, although being very important for the realness of the 3D avatar representations. In this work we present the first, to the best of our knowledge, end-to-end trainable pipeline that accurately reconstructs the 3D face together with the tongue. Moreover, we make this pipeline robust in in-the-wild images by introducing a novel GAN method tailored for 3D tongue surface generation. Finally, we make publicly available to the community the first diverse tongue dataset, consisting of 1,800 raw scans of 700 individuals varying in gender, age, and ethnicity backgrounds. As we demonstrate in an extensive series of quantitative as well as qualitative experiments, our model proves to be robust and realistically captures the 3D tongue structure, even in adverse in-the-wild conditions.
Most 3D face reconstruction methods rely on 3D morphable models, which disentangle the space of facial deformations into identity geometry, expressions and skin reflectance. These models are typically learned from a limited number of 3D scans and thu s do not generalize well across different identities and expressions. We present the first approach to learn complete 3D models of face identity geometry, albedo and expression just from images and videos. The virtually endless collection of such data, in combination with our self-supervised learning-based approach allows for learning face models that generalize beyond the span of existing approaches. Our network design and loss functions ensure a disentangled parameterization of not only identity and albedo, but also, for the first time, an expression basis. Our method also allows for in-the-wild monocular reconstruction at test time. We show that our learned models better generalize and lead to higher quality image-based reconstructions than existing approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا