ترغب بنشر مسار تعليمي؟ اضغط هنا

BundleTrack: 6D Pose Tracking for Novel Objects without Instance or Category-Level 3D Models

276   0   0.0 ( 0 )
 نشر من قبل Bowen Wen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tracking the 6D pose of objects in video sequences is important for robot manipulation. Most prior efforts, however, often assume that the target objects CAD model, at least at a category-level, is available for offline training or during online template matching. This work proposes BundleTrack, a general framework for 6D pose tracking of novel objects, which does not depend upon 3D models, either at the instance or category-level. It leverages the complementary attributes of recent advances in deep learning for segmentation and robust feature extraction, as well as memory-augmented pose graph optimization for spatiotemporal consistency. This enables long-term, low-drift tracking under various challenging scenarios, including significant occlusions and object motions. Comprehensive experiments given two public benchmarks demonstrate that the proposed approach significantly outperforms state-of-art, category-level 6D tracking or dynamic SLAM methods. When compared against state-of-art methods that rely on an object instance CAD model, comparable performance is achieved, despite the proposed methods reduced information requirements. An efficient implementation in CUDA provides a real-time performance of 10Hz for the entire framework. Code is available at: https://github.com/wenbowen123/BundleTrack



قيم البحث

اقرأ أيضاً

75 - Yijia Weng , He Wang , Qiang Zhou 2021
In this work, we tackle the problem of category-level online pose tracking of objects from point cloud sequences. For the first time, we propose a unified framework that can handle 9DoF pose tracking for novel rigid object instances as well as per-pa rt pose tracking for articulated objects from known categories. Here the 9DoF pose, comprising 6D pose and 3D size, is equivalent to a 3D amodal bounding box representation with free 6D pose. Given the depth point cloud at the current frame and the estimated pose from the last frame, our novel end-to-end pipeline learns to accurately update the pose. Our pipeline is composed of three modules: 1) a pose canonicalization module that normalizes the pose of the input depth point cloud; 2) RotationNet, a module that directly regresses small interframe delta rotations; and 3) CoordinateNet, a module that predicts the normalized coordinates and segmentation, enabling analytical computation of the 3D size and translation. Leveraging the small pose regime in the pose-canonicalized point clouds, our method integrates the best of both worlds by combining dense coordinate prediction and direct rotation regression, thus yielding an end-to-end differentiable pipeline optimized for 9DoF pose accuracy (without using non-differentiable RANSAC). Our extensive experiments demonstrate that our method achieves new state-of-the-art performance on category-level rigid object pose (NOCS-REAL275) and articulated object pose benchmarks (SAPIEN , BMVC) at the fastest FPS ~12.
We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method w orks well for partly occluded objects. Our main contribution is to present the first deep learning-based system that estimates accurate poses for partly occluded objects from RGB-D and RGB input. We achieve this with a new instance-aware pipeline that decomposes 6D object pose estimation into a sequence of simpler steps, where each step removes specific aspects of the problem. The first step localizes all known objects in the image using an instance segmentation network, and hence eliminates surrounding clutter and occluders. The second step densely maps pixels to 3D object surface positions, so called object coordinates, using an encoder-decoder network, and hence eliminates object appearance. The third, and final, step predicts the 6D pose using geometric optimization. We demonstrate that we significantly outperform the state-of-the-art for pose estimation of partly occluded objects for both RGB and RGB-D input.
We present 6-PACK, a deep learning approach to category-level 6D object pose tracking on RGB-D data. Our method tracks in real-time novel object instances of known object categories such as bowls, laptops, and mugs. 6-PACK learns to compactly represe nt an object by a handful of 3D keypoints, based on which the interframe motion of an object instance can be estimated through keypoint matching. These keypoints are learned end-to-end without manual supervision in order to be most effective for tracking. Our experiments show that our method substantially outperforms existing methods on the NOCS category-level 6D pose estimation benchmark and supports a physical robot to perform simple vision-based closed-loop manipulation tasks. Our code and video are available at https://sites.google.com/view/6packtracking.
The goal of this paper is to estimate the 6D pose and dimensions of unseen object instances in an RGB-D image. Contrary to instance-level 6D pose estimation tasks, our problem assumes that no exact object CAD models are available during either traini ng or testing time. To handle different and unseen object instances in a given category, we introduce a Normalized Object Coordinate Space (NOCS)---a shared canonical representation for all possible object instances within a category. Our region-based neural network is then trained to directly infer the correspondence from observed pixels to this shared object representation (NOCS) along with other object information such as class label and instance mask. These predictions can be combined with the depth map to jointly estimate the metric 6D pose and dimensions of multiple objects in a cluttered scene. To train our network, we present a new context-aware technique to generate large amounts of fully annotated mixed reality data. To further improve our model and evaluate its performance on real data, we also provide a fully annotated real-world dataset with large environment and instance variation. Extensive experiments demonstrate that the proposed method is able to robustly estimate the pose and size of unseen object instances in real environments while also achieving state-of-the-art performance on standard 6D pose estimation benchmarks.
In this paper, we focus on estimating the 6D pose of objects in point clouds. Although the topic has been widely studied, pose estimation in point clouds remains a challenging problem due to the noise and occlusion. To address the problem, a novel 3D PVNet is presented in this work, which utilizes 3D local patches to vote for the object 6D poses. 3DPVNet is comprised of three modules. In particular, a Patch Unification (textbf{PU}) module is first introduced to normalize the input patch, and also create a standard local coordinate frame on it to generate a reliable vote. We then devise a Weight-guided Neighboring Feature Fusion (textbf{WNFF}) module in the network, which fuses the neighboring features to yield a semi-global feature for the center patch. WNFF module mines the neighboring information of a local patch, such that the representation capability to local geometric characteristics is significantly enhanced, making the method robust to a certain level of noise. Moreover, we present a Patch-level Voting (textbf{PV}) module to regress transformations and generates pose votes. After the aggregation of all votes from patches and a refinement step, the final pose of the object can be obtained. Compared to recent voting-based methods, 3DPVNet is patch-level, and directly carried out on point clouds. Therefore, 3DPVNet achieves less computation than point/pixel-level voting scheme, and has robustness to partial data. Experiments on several datasets demonstrate that 3DPVNet achieves the state-of-the-art performance, and is also robust against noise and occlusions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا