ﻻ يوجد ملخص باللغة العربية
We use mixed correlators in thermal CFT as clean probes of the strong gravity effects in their holographic duals. The dual interpretation of mixing is an inelastic conversion of one field to another field, induced by gravity: tidal excitation. We find an enhanced mixing at high temperatures, corresponding to large AdS black holes, concentrated to small boundary momenta, dual to the deep bulk, where strong gravitational fields are expected. We also find large $mathcal{O}(1/G_{N})$ tidal conversion in the low temperature phase of the $U(N)$ vector model, strengthening suspicions that the bulk dual of this phase also houses extremely compact objects.
We study fermionic bulk fields in the dS/CFT dualities relating ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space. These dualit
We put forward new explicit realisations of dS/CFT that relate ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The
The tools of Kerr/CFT correspondence are applied to the Kerr black hole embedded in an axial external magnetic field. Its extremal near horizon geometry remains a warped and twisted product of $AdS_2times S^2$. The central charge of the Virasoro alge
This is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring
We present a new exact black hole solution in three dimensional Einstein gravity coupled to a single scalar field. This is one of the extended solutions of the BTZ black hole and has in fact $textrm{AdS}_3$ geometries both at the spatial infinity and