ﻻ يوجد ملخص باللغة العربية
We study fermionic bulk fields in the dS/CFT dualities relating ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space. These dualities specify the Hartle - Hawking wave function in terms of the partition function of deformations of the vector models. We evaluate this wave function in homogeneous minisuperspace models consisting of supersymmetry-breaking combinations of a half-integer spin field with either a scalar, a pseudoscalar or a metric squashing. The wave function appears to be well-behaved and globally peaked at or near the supersymmetric de Sitter vacuum, with a low amplitude for large deformations. Its behavior in the semiclassical limit qualitatively agrees with earlier bulk computations both for massless and massive fermionic fields.
We put forward new explicit realisations of dS/CFT that relate ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The
This is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring
We study Lorentzian supersymmetric configurations in $D=4$ and $D=5$ gauged $mathcal{N}=2$ supergravity. We show that there are smooth $1/2$ BPS solutions which are asymptotically AdS$_{4}$ and AdS$_{5}$ with a planar boundary, a compact spacelike di
We consider the holographic duality between 4d type-A higher-spin gravity and a 3d free vector model. It is known that the Feynman diagrams for boundary correlators can be encapsulated in an HS-algebraic twistorial expression. This expression can be
Similarly as in AdS/CFT, the requirement that the action for spinors be stationary for solutions to the Dirac equation with fixed boundary conditions determines the form of the boundary term that needs to be added to the standard Dirac action in Kerr