ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of exact community recovery in the symmetric stochastic block model, where a graph of $n$ vertices is randomly generated by partitioning the vertices into $K ge 2$ equal-sized communities and then connecting each pair of vertices with probability that depends on their community memberships. Although the maximum-likelihood formulation of this problem is discrete and non-convex, we propose to tackle it directly using projected power iterations with an initialization that satisfies a partial recovery condition. Such an initialization can be obtained by a host of existing methods. We show that in the logarithmic degree regime of the considered problem, the proposed method can exactly recover the underlying communities at the information-theoretic limit. Moreover, with a qualified initialization, it runs in $mathcal{O}(nlog^2n/loglog n)$ time, which is competitive with existing state-of-the-art methods. We also present numerical results of the proposed method to support and complement our theoretical development.
We derive the branch ampacity constraint associated to power losses for the convex optimal power flow (OPF) model based on the branch flow formulation. The branch ampacity constraint derivation is motivated by the physical interpretation of the trans
We study the problem of reconstructing a block-sparse signal from compressively sampled measurements. In certain applications, in addition to the inherent block-sparse structure of the signal, some prior information about the block support, i.e. bloc
We introduce SPRING, a novel stochastic proximal alternating linearized minimization algorithm for solving a class of non-smooth and non-convex optimization problems. Large-scale imaging problems are becoming increasingly prevalent due to advances in
This paper considers decentralized stochastic optimization over a network of $n$ nodes, where each node possesses a smooth non-convex local cost function and the goal of the networked nodes is to find an $epsilon$-accurate first-order stationary poin
Optimal power flow (OPF) is the fundamental mathematical model in power system operations. Improving the solution quality of OPF provide huge economic and engineering benefits. The convex reformulation of the original nonconvex alternating current OP