ﻻ يوجد ملخص باللغة العربية
We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant $s$-wave interactions, but also those in $d$ waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle $d$ waves. We use three $N_f=2+1$ CLS ensembles with pion masses of $200$, $280$, and $340;$MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.
We present a determination of nucleon-nucleon scattering phase shifts for l >= 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For l > 0, this is the first lattic
Luschers method is routinely used to determine meson-meson, meson-baryon and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from Lattice QCD calculations - presently at unphysical light-quark masses. In this work we review the
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forgin
We report the recent progress on the determination of three-nucleon forces (3NF) in lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to define the potential in quantum field theory, and extract two-nucleon forces (2NF) and 3NF on
An extended multi-hadron operator is developed to extract the spectra of irreducible representations in the finite volume. The irreducible representations of the cubic group are projected using a coordinate-space operator. The correlation function of