ﻻ يوجد ملخص باللغة العربية
Precision experimental tests of the Standard Model of particle physics (SM) are one of our best hopes for discovering what new physics lies beyond the SM (BSM). Key in the search for new physics is the connection between theory and experiment. Forging this connection for searches involving low-energy hadronic or nuclear environments requires the use of a non-perturbative theoretical tool, lattice QCD. We present two recent lattice QCD calculations by the CalLat collaboration relevant for new physics searches: the nucleon axial coupling, $g_A$, whose precise value as predicted by the SM could help point to new physics contributions to the so-called neutron lifetime puzzle, and hadronic matrix elements of short-ranged operators relevant for neutrinoless double beta decay searches.
We report the recent progress on the determination of three-nucleon forces (3NF) in lattice QCD. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to define the potential in quantum field theory, and extract two-nucleon forces (2NF) and 3NF on
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bo
The $S$-wave $LambdaLambda$ and $N Xi$ interactions are studied on the basis of the (2+1)-flavor lattice QCD simulations close to the physical point ($m_pi simeq 146{rm{MeV}}$ and $m_K simeq 525{rm{MeV}}$). Lattice QCD potentials in four different sp
We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels,