ﻻ يوجد ملخص باللغة العربية
The Earth contains between one and ten oceans of water, including water within the mantle, where one ocean is the mass of water on the Earths surface today. With $n$-body simulations we consider how much water could have been delivered from the asteroid belt to the Earth after its formation. Asteroids are delivered from unstable regions near resonances with the giant planets. We compare the relative impact efficiencies from the $ u_6$ resonance, the 2:1 mean motion resonance with Jupiter and the outer asteroid belt. The $ u_6$ resonance provides the largest supply of asteroids to the Earth, with about $2%$ of asteroids from that region colliding with the Earth. Asteroids located in mean motion resonances with Jupiter and in the outer asteroid belt have negligible Earth-collision probabilities. The maximum number of Earth collisions occurs if the asteroids in the primordial asteroid belt are first moved into the $ u_6$ resonance location (through asteroid-asteroid interactions or otherwise) before their eccentricity is excited sufficiently for Earth collision. A maximum of about eight oceans of water may be delivered to the Earth. Thus, if the Earth contains ten or more oceans of water, the Earth likely formed with a significant fraction of this water.
The asteroid (4) Vesta, parent body of the Howardite-Eucrite-Diogenite meteorites, is one of the first bodies that formed, mostly from volatile-depleted material, in the Solar System. The Dawn mission recently provided evidence that hydrated material
The asteroid belt contains less than a thousandth of Earths mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly dep
With the growing numbers of asteroids being discovered, identifying an observationally complete sample is essential for statistical analyses and for informing theoretical models of the dynamical evolution of the solar system. We present an easily imp
When a planet becomes massive enough, it gradually carves a partial gap around its orbit in the protoplanetary disk. A pressure maximum can be formed outside the gap where solids that are loosely coupled to the gas, typically in the pebble size range
The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64,000 (excluding collisional family members). We undertook an analysis of asteroids eccentricities and their int