ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating terahertz field-induced transient ferroeletricity in quantum paraelectric SrTiO$_3$

85   0   0.0 ( 0 )
 نشر من قبل Dongbin Shin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent experiments have demonstrated that intense terahertz (THz) fields can induce a transition from the quantum paraeletric to the ferroeletric phase of SrTiO$_3$. Here, we investigate this THz field-induced transient ferroeletric phase transition by solving the time-dependent lattice Schodinger equation based on first-principles calculations. We find that transient ferroeletricity originates from a light-induced mixing between ground and first excited lattice states in the quantum paraeletric phase. In agreement with the experimental findings, our study shows that the non-oscillatory second harmonic generation signal can be evidence of transient ferroeletricity in SrTiO$_3$. We reveal the microscopic details of this exotic phase transition and highlight that this phenomenon is a unique behavior of the quantum paraeletric phase.



قيم البحث

اقرأ أيضاً

We demonstrate how the quantum paraelectric ground state of SrTiO$_3$ can be accessed via a microscopic $ab~initio$ approach based on density functional theory. At low temperature the quantum fluctuations are strong enough to stabilize the paraelectr ic phase even though a classical description would predict a ferroelectric phase. We find that accounting for quantum fluctuations of the lattice and for the strong coupling between the ferroelectric soft mode and lattice elongation is necessary to achieve quantitative agreement with experimental frequency of the ferroelectric soft mode. The temperature dependent properties in SrTiO$_3$ are also well captured by the present microscopic framework.
Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superla ttices of SrTiO$_3$ (STO) and LaCrO$_3$ (LCO) is demonstrated. By controlling the interfaces between polar LCO and non-polar STO, polarization is induced throughout the STO layers of the superlattice. Using x-ray absorption near-edge spectroscopy and aberration-corrected scanning transmission electron microscopy displacements of the Ti cations off-center within TiO6 octahedra along the superlattice growth direction are measured. This distortion gives rise to built-in potential gradients within the STO and LCO layers, as measured by in situ x-ray photoelectron spectroscopy. Density functional theory models explain the mechanisms underlying this behavior, revealing the existence of both an intrinsic polar distortion and a built-in electric field, which are due to alternately positively and negatively charged interfaces in the superlattice. This study paves the way for controllable polarization for carrier separation in multilayer materials and highlights the crucial role that interface structure plays in governing such behavior.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p lanes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
Advances in complex oxide heteroepitaxy have highlighted the enormous potential of utilizing strain engineering via lattice mismatch to control ferroelectricity in thin-film heterostructures. This approach, however, lacks the ability to produce large and continuously variable strain states, thus limiting the potential for designing and tuning the desired properties of ferroelectric films. Here, we observe and explore dynamic strain-induced ferroelectricity in SrTiO$_3$ by laminating freestanding oxide films onto a stretchable polymer substrate. Using a combination of scanning probe microscopy, optical second harmonic generation measurements, and atomistic modeling, we demonstrate robust room-temperature ferroelectricity in SrTiO$_3$ with 2.0% uniaxial tensile strain, corroborated by the notable features of 180{deg} ferroelectric domains and an extrapolated transition temperature of 400 K. Our work reveals the enormous potential of employing oxide membranes to create and enhance ferroelectricity in environmentally benign lead-free oxides, which hold great promise for applications ranging from non-volatile memories and microwave electronics.
151 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا