ترغب بنشر مسار تعليمي؟ اضغط هنا

Interface-induced Polarization in SrTiO$_3$-LaCrO$_3$ Superlattices

184   0   0.0 ( 0 )
 نشر من قبل Ryan Comes
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epitaxial interfaces and superlattices comprised of polar and non-polar perovskite oxides have generated considerable interest because they possess a range of desirable properties for functional devices. In this work, emergent polarization in superlattices of SrTiO$_3$ (STO) and LaCrO$_3$ (LCO) is demonstrated. By controlling the interfaces between polar LCO and non-polar STO, polarization is induced throughout the STO layers of the superlattice. Using x-ray absorption near-edge spectroscopy and aberration-corrected scanning transmission electron microscopy displacements of the Ti cations off-center within TiO6 octahedra along the superlattice growth direction are measured. This distortion gives rise to built-in potential gradients within the STO and LCO layers, as measured by in situ x-ray photoelectron spectroscopy. Density functional theory models explain the mechanisms underlying this behavior, revealing the existence of both an intrinsic polar distortion and a built-in electric field, which are due to alternately positively and negatively charged interfaces in the superlattice. This study paves the way for controllable polarization for carrier separation in multilayer materials and highlights the crucial role that interface structure plays in governing such behavior.



قيم البحث

اقرأ أيضاً

The effect of growth conditions on the structural and electronic properties of the polar/non-polar LaCrO$_3$/SrTiO$_3$ (LCO/STO) interface has been investigated. The interface is either insulating or metallic depending on growth conditions. A high sh eet carrier concentration of 2x10$^{16}$ cm$^{-2}$ and mobility of 30,000 cm$^2$/V s is reported for the metallic interfaces, which is similar to the quasi-two dimensional gas at the LaAlO$_{3}$/SrTiO$_{3}$ interface with similar growth conditions. High-resolution synchrotron X-ray-based structural determination of the atomic-scale structures of both metallic and insulating LCO/STO interfaces show chemical intermixing and an interfacial lattice expansion. Angle resolved photoemission spectroscopy of 2 and 4 uc metallic LCO/STO shows no intensity near the Fermi level indicating that the conducting region is occurring deep enough in the substrate to be inaccessible to photoemission spectroscopy. Post-growth annealing in flowing oxygen causes a reduction in the sheet carrier concentration and mobility for the metallic interface while annealing the insulating interface at high temperatures and low oxygen partial pressures results in metallicity. These results highlight the critical role of defects related to oxygen vacancies on the creation of mobile charge carriers at the LCO/STO heterointerface.
Ionic crystals terminated at oppositely charged polar surfaces are inherently unstable and expected to undergo surface reconstructions to maintain electrostatic stability. Essentially, an electric field that arises between oppositely charged atomic p lanes gives rise to a built-in potential that diverges with thickness. In ultra thin film form however the polar crystals are expected to remain stable without necessitating surface reconstructions, yet the built-in potential has eluded observation. Here we present evidence of a built-in potential across polar lao ~thin films grown on sto ~substrates, a system well known for the electron gas that forms at the interface. By performing electron tunneling measurements between the electron gas and a metallic gate on lao ~we measure a built-in electric field across lao ~of 93 meV/AA. Additionally, capacitance measurements reveal the presence of an induced dipole moment near the interface in sto, illuminating a unique property of sto ~substrates. We forsee use of the ionic built-in potential as an additional tuning parameter in both existing and novel device architectures, especially as atomic control of oxide interfaces gains widespread momentum.
143 - A. F^ete , C. Cancellieri , D. Li 2015
We have studied the electronic properties of the 2D electron liquid present at the LaAlO$_3$/SrTiO$_3$ interface in series of samples prepared at different growth temperatures. We observe that interfaces fabricated at 650{deg}C exhibit the highest lo w temperature mobility ($approx 10000 textrm{ cm}^2/textrm{Vs}$) and the lowest sheet carrier density ($approx 5times 10^{12} textrm{ cm}^{-2}$). These samples show metallic behavior and Shubnikov-de Haas oscillations in their magnetoresistance. Samples grown at higher temperatures (800-900{deg}C) display carrier densities in the range of $approx 2-5 times 10^{13} textrm{ cm}^{-2}$ and mobilities of $approx 1000 textrm{ cm}^2/textrm{Vs}$ at 4K. Reducing their carrier density by field effect to $8times 10^{12} textrm{ cm}^{-2}$ lowers their mobilites to $approx 50 textrm{ cm}^2/textrm{Vs}$ bringing the conductance to the weak-localization regime.
LaCrO$_3$ (LCO) / SrTiO$_3$ (STO) heterojunctions are intriguing due to a polar discontinuity along (001), two distinct and controllable interface structures [(LaO)$^+$/(TiO$_2$)$^0$ and (SrO)$^0$/(CrO$_2$)$^-$], and interface-induced polarization. I n this study, we have used soft- and hard x-ray standing-wave excited photoemission spectroscopy (SW-XPS) to generate a quantitative determination of the elemental depth profiles and interface properties, band alignments, and the depth distribution of the interface-induced built-in potentials in the two constituent oxides. We observe an alternating charged interface configuration: a positively charged (LaO)$^+$/(TiO$_2$)$^0$ intermediate layer at the LCO$_textbf{top}$/STO$_textbf{bottom}$ interface and a negatively charged (SrO)$^0$/(CrO$_2$)$^-$ intermediate layer at the STO$_textbf{top}$/LCO$_textbf{bottom}$ interface. Using core-level SW data, we have determined the depth distribution of species, including through the interfaces, and these results are in excellent agreement with scanning transmission electron microscopy and electron energy loss spectroscopy (STEM-EELS) mapping of local structure and composition. SW-XPS also enabled deconvolution of the LCO-contributed and STO- contributed matrix-element-weighted density of states (MEWDOSs) from the valence band (VB) spectra for the LCO/STO superlattice (SL). Monitoring the VB edges of the deconvoluted MEWDOS shifts with a change in probing profile, the alternating charge- induced built-in potentials are observed in both constituent oxides. Finally, using a two-step simulation approach involving first core-level binding energy shifts and then valence-band modeling, the built-in potential gradients across the SL are resolved in detail and represented by the depth distribution of VB edges.
Thin film synthesis methods developed over the past decades have unlocked emergent interface properties ranging from conductivity to ferroelectricity. However, our attempts to exercise precise control over interfaces are constrained by a limited unde rstanding of growth pathways and kinetics. Here we demonstrate that shuttered molecular beam epitaxy induces rearrangements of atomic planes at a polar / non-polar junction of LaFeO$_3$ (LFO) / $n$-SrTiO$_3$ (STO) depending on the substrate termination. Surface characterization confirms that substrates with two different (TiO$_2$ and SrO) terminations were prepared prior to LFO deposition; however, local electron energy loss spectroscopy measurements of the final heterojunctions show a predominantly LaO / TiO$_2$ interfacial junction in both cases. Ab initio simulations suggest that the interfaces can be stabilized by trapping extra oxygen (in LaO / TiO$_2$) and forming oxygen vacancies (in FeO$_2$ / SrO), which points to different growth kinetics in each case and may explain the apparent disappearance of the FeO$_2$ / SrO interface. We conclude that judicious control of deposition timescales can be used to modify growth pathways, opening new avenues to control the structure and properties of interfacial systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا