ترغب بنشر مسار تعليمي؟ اضغط هنا

Osiris: Automated Discovery of Microarchitectural Side Channels

82   0   0.0 ( 0 )
 نشر من قبل Daniel Weber
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the last years, a series of side channels have been discovered on CPUs. These side channels have been used in powerful attacks, e.g., on cryptographic implementations, or as building blocks in transient-execution attacks such as Spectre or Meltdown. However, in many cases, discovering side channels is still a tedious manual process. In this paper, we present Osiris, a fuzzing-based framework to automatically discover microarchitectural side channels. Based on a machine-readable specification of a CPUs ISA, Osiris generates instruction-sequence triples and automatically tests whether they form a timing-based side channel. Furthermore, Osiris evaluates their usability as a side channel in transient-execution attacks, i.e., as the microarchitectural encoding for attacks like Spectre. In total, we discover four novel timing-based side channels on Intel and AMD CPUs. Based on these side channels, we demonstrate exploitation in three case studies. We show that our microarchitectural KASLR break using non-temporal loads, FlushConflict, even works on the new Intel Ice Lake and Comet Lake microarchitectures. We present a cross-core cross-VM covert channel that is not relying on the memory subsystem and transmits up to 1 kbit/s. We demonstrate this channel on the AWS cloud, showing that it is stealthy and noise resistant. Finally, we demonstrate Stream+Reload, a covert channel for transient-execution attacks that, on average, allows leaking 7.83 bytes within a transient window, improving state-of-the-art attacks that only leak up to 3 bytes.



قيم البحث

اقرأ أيضاً

Deep learning is gaining importance in many applications. However, Neural Networks face several security and privacy threats. This is particularly significant in the scenario where Cloud infrastructures deploy a service with Neural Network model at t he back end. Here, an adversary can extract the Neural Network parameters, infer the regularization hyperparameter, identify if a data point was part of the training data, and generate effective transferable adversarial examples to evade classifiers. This paper shows how a Neural Network model is susceptible to timing side channel attack. In this paper, a black box Neural Network extraction attack is proposed by exploiting the timing side channels to infer the depth of the network. Although, constructing an equivalent architecture is a complex search problem, it is shown how Reinforcement Learning with knowledge distillation can effectively reduce the search space to infer a target model. The proposed approach has been tested with VGG architectures on CIFAR10 data set. It is observed that it is possible to reconstruct substitute models with test accuracy close to the target models and the proposed approach is scalable and independent of type of Neural Network architectures.
We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or smart speaker placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen.
92 - Shuai Wang , Yuyan Bao , Xiao Liu 2019
Cache-based side channels enable a dedicated attacker to reveal program secrets by measuring the cache access patterns. Practical attacks have been shown against real-world crypto algorithm implementations such as RSA, AES, and ElGamal. By far, ident ifying information leaks due to cache-based side channels, either in a static or dynamic manner, remains a challenge: the existing approaches fail to offer high precision, full coverage, and good scalability simultaneously, thus impeding their practical use in real-world scenarios. In this paper, we propose a novel static analysis method on binaries to detect cache-based side channels. We use abstract interpretation to reason on program states with respect to abstract values at each program point. To make such abstract interpretation scalable to real-world cryptosystems while offering high precision and full coverage, we propose a novel abstract domain called the Secret-Augmented Symbolic domain (SAS). SAS tracks program secrets and dependencies on them for precision, while it tracks only coarse-grained public information for scalability. We have implemented the proposed technique into a practical tool named CacheS and evaluated it on the implementations of widely-used cryptographic algorithms in real-world crypto libraries, including Libgcrypt, OpenSSL, and mbedTLS. CacheS successfully confirmed a total of 154 information leaks reported by previous research and 54 leaks that were previously unknown. We have reported our findings to the developers. And they confirmed that many of those unknown information leaks do lead to potential side channels.
The recent Spectre attacks has demonstrated the fundamental insecurity of current computer microarchitecture. The attacks use features like pipelining, out-of-order and speculation to extract arbitrary information about the memory contents of a proce ss. A comprehensive formal microarchitectural model capable of representing the forms of out-of-order and speculative behavior that can meaningfully be implemented in a high performance pipelined architecture has not yet emerged. Such a model would be very useful, as it would allow the existence and non-existence of vulnerabilities, and soundness of countermeasures to be formally established. In this paper we present such a model targeting single core processors. The model is intentionally very general and provides an infrastructure to define models of real CPUs. It incorporates microarchitectural features that underpin all known Spectre vulnerabilities. We use the model to elucidate the security of existing and new vulnerabilities, as well as to formally analyze the effectiveness of proposed countermeasures. Specifically, we discover three new (potential) vulnerabilities, including a new variant of Spectre v4, a vulnerability on speculative fetching, and a vulnerability on out-of-order execution, and analyze the effectiveness of three existing countermeasures: constant time, Retpoline, and ARMs Speculative Store Bypass Safe (SSBS).
Hardware (HW) security issues have been emerging at an alarming rate in recent years. Transient execution attacks, in particular, pose a genuine threat to the security of modern computing systems. Despite recent advances, understanding the intricate implications of microarchitectural design decisions on processor security remains a great challenge and has caused a number of update cycles in the past. number of update cycles in the past. This papers addresses the need for a new approach to HW sign-off verification which guarantees the security of processors at the Register Transfer Level (RTL). To this end, we introduce a formal definition of security with respect to transient execution attacks, formulated as a HW property. We present a formal proof methodology based on Unique Program Execution Checking (UPEC) which can be used to systematically detect all vulnerabilities to transient execution attacks in RTL designs. UPEC does not exploit any a priori knowledge on known attacks and can therefore detect also vulnerabilities based on new, so far unknown, types of channels. This is demonstrated by two new attack scenarios discovered in our experiments with UPEC. UPEC scales to a wide range of HW designs, including in-order processors (RocketChip), pipelines with out-of-order writeback (Ariane), and processors with deep out-of-order speculative execution (BOOM). To the best of our knowledge, UPEC is the first RTL verification technique that exhaustively covers transient execution side channels in processors of realistic complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا