ﻻ يوجد ملخص باللغة العربية
The recent Spectre attacks has demonstrated the fundamental insecurity of current computer microarchitecture. The attacks use features like pipelining, out-of-order and speculation to extract arbitrary information about the memory contents of a process. A comprehensive formal microarchitectural model capable of representing the forms of out-of-order and speculative behavior that can meaningfully be implemented in a high performance pipelined architecture has not yet emerged. Such a model would be very useful, as it would allow the existence and non-existence of vulnerabilities, and soundness of countermeasures to be formally established. In this paper we present such a model targeting single core processors. The model is intentionally very general and provides an infrastructure to define models of real CPUs. It incorporates microarchitectural features that underpin all known Spectre vulnerabilities. We use the model to elucidate the security of existing and new vulnerabilities, as well as to formally analyze the effectiveness of proposed countermeasures. Specifically, we discover three new (potential) vulnerabilities, including a new variant of Spectre v4, a vulnerability on speculative fetching, and a vulnerability on out-of-order execution, and analyze the effectiveness of three existing countermeasures: constant time, Retpoline, and ARMs Speculative Store Bypass Safe (SSBS).
Security is a requirement of utmost importance to produce high-quality software. However, there is still a considerable amount of vulnerabilities being discovered and fixed almost weekly. We hypothesize that developers affect the maintainability of t
To address privacy problems with the EMV standard, EMVco proposed a Blinded Diffie-Hellman key establishment protocol. We point out that active attackers were not previously accounted for in the privacy requirements of this proposed protocol, despite
In the last years, a series of side channels have been discovered on CPUs. These side channels have been used in powerful attacks, e.g., on cryptographic implementations, or as building blocks in transient-execution attacks such as Spectre or Meltdow
NEO is one of the top public chains worldwide. We focus on its backbone consensus protocol, called delegated Byzantine Fault Tolerance (dBFT). The dBFT protocol has been adopted by a variety of blockchain systems such as ONT. dBFT claims to guarantee
We uncover privacy vulnerabilities in the ICAO 9303 standard implemented by ePassports worldwide. These vulnerabilities, confirmed by ICAO, enable an ePassport holder who recently passed through a checkpoint to be reidentified without opening their e