ﻻ يوجد ملخص باللغة العربية
Graph Convolutional Networks (GCNs) are typically studied through the lens of Euclidean geometry. Non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data, but cannot align well with data of mixed topologies. We consider a larger class of semi-Riemannian manifolds with indefinite metric that generalize hyperboloid and sphere as well as their submanifolds. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected semi-Riemannian manifolds. As a consequence, we derive a principled Semi-Riemannian GCN that first models data in semi-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
Graph convolutional networks gain remarkable success in semi-supervised learning on graph structured data. The key to graph-based semisupervised learning is capturing the smoothness of labels or features over nodes exerted by graph structure. Previou
Graph convolutional neural networks~(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification, but little work has been done to explore their theoretical properties. Recently, several deep neural networks, e.g.
Graph convolutional networks (GCNs) have received considerable research attention recently. Most GCNs learn the node representations in Euclidean geometry, but that could have a high distortion in the case of embedding graphs with scale-free or hiera
Graphs have been widely adopted to denote structural connections between entities. The relations are in many cases heterogeneous, but entangled together and denoted merely as a single edge between a pair of nodes. For example, in a social network gra
Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especia