ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning via Gaussian Processes

325   0   0.0 ( 0 )
 نشر من قبل Jilin Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Graph convolutional neural networks~(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification, but little work has been done to explore their theoretical properties. Recently, several deep neural networks, e.g., fully connected and convolutional neural networks, with infinite hidden units have been proved to be equivalent to Gaussian processes~(GPs). To exploit both the powerful representational capacity of GCNs and the great expressive power of GPs, we investigate similar properties of infinitely wide GCNs. More specifically, we propose a GP regression model via GCNs~(GPGC) for graph-based semi-supervised learning. In the process, we formulate the kernel matrix computation of GPGC in an iterative analytical form. Finally, we derive a conditional distribution for the labels of unobserved nodes based on the graph structure, labels for the observed nodes, and the feature matrix of all the nodes. We conduct extensive experiments to evaluate the semi-supervised classification performance of GPGC and demonstrate that it outperforms other state-of-the-art methods by a clear margin on all the datasets while being efficient.



قيم البحث

اقرأ أيضاً

We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-sup ervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.
89 - Ian Walker , Ben Glocker 2019
We propose a novel Bayesian nonparametric method to learn translation-invariant relationships on non-Euclidean domains. The resulting graph convolutional Gaussian processes can be applied to problems in machine learning for which the input observatio ns are functions with domains on general graphs. The structure of these models allows for high dimensional inputs while retaining expressibility, as is the case with convolutional neural networks. We present applications of graph convolutional Gaussian processes to images and triangular meshes, demonstrating their versatility and effectiveness, comparing favorably to existing methods, despite being relatively simple models.
142 - Yawei Luo , Tao Guan , Junqing Yu 2018
Graph convolutional network (GCN) provides a powerful means for graph-based semi-supervised tasks. However, as a localized first-order approximation of spectral graph convolution, the classic GCN can not take full advantage of unlabeled data, especia lly when the unlabeled node is far from labeled ones. To capitalize on the information from unlabeled nodes to boost the training for GCN, we propose a novel framework named Self-Ensembling GCN (SEGCN), which marries GCN with Mean Teacher - another powerful model in semi-supervised learning. SEGCN contains a student model and a teacher model. As a student, it not only learns to correctly classify the labeled nodes, but also tries to be consistent with the teacher on unlabeled nodes in more challenging situations, such as a high dropout rate and graph collapse. As a teacher, it averages the student model weights and generates more accurate predictions to lead the student. In such a mutual-promoting process, both labeled and unlabeled samples can be fully utilized for backpropagating effective gradients to train GCN. In three article classification tasks, i.e. Citeseer, Cora and Pubmed, we validate that the proposed method matches the state of the arts in the classification accuracy.
200 - Bingbing Xu , Huawei Shen , Qi Cao 2020
Graph convolutional networks gain remarkable success in semi-supervised learning on graph structured data. The key to graph-based semisupervised learning is capturing the smoothness of labels or features over nodes exerted by graph structure. Previou s methods, spectral methods and spatial methods, devote to defining graph convolution as a weighted average over neighboring nodes, and then learn graph convolution kernels to leverage the smoothness to improve the performance of graph-based semi-supervised learning. One open challenge is how to determine appropriate neighborhood that reflects relevant information of smoothness manifested in graph structure. In this paper, we propose GraphHeat, leveraging heat kernel to enhance low-frequency filters and enforce smoothness in the signal variation on the graph. GraphHeat leverages the local structure of target node under heat diffusion to determine its neighboring nodes flexibly, without the constraint of order suffered by previous methods. GraphHeat achieves state-of-the-art results in the task of graph-based semi-supervised classification across three benchmark datasets: Cora, Citeseer and Pubmed.
100 - Attaullah Sahito , Eibe Frank , 2021
Neural networks have been successfully used as classification models yielding state-of-the-art results when trained on a large number of labeled samples. These models, however, are more difficult to train successfully for semi-supervised problems whe re small amounts of labeled instances are available along with a large number of unlabeled instances. This work explores a new training method for semi-supervised learning that is based on similarity function learning using a Siamese network to obtain a suitable embedding. The learned representations are discriminative in Euclidean space, and hence can be used for labeling unlabeled instances using a nearest-neighbor classifier. Confident predictions of unlabeled instances are used as true labels for retraining the Siamese network on the expanded training set. This process is applied iteratively. We perform an empirical study of this iterative self-training algorithm. For improving unlabeled predictions, local learning with global consistency [22] is also evaluated.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا