ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Identification at FCC-ee

119   0   0.0 ( 0 )
 نشر من قبل Guy Wilkinson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guy Wilkinson




اسأل ChatGPT حول البحث

Equipping an experiment at FCC-ee with particle identification (PID) capabilities, in particular the ability to distinguish between hadron species, would bring great benefits to the physics programme. Good PID is essential for precise studies in quark flavour physics, and is also a great asset for many measurements in tau, top and Higgs physics. The requirements placed by flavour physics and these other applications are surveyed, with an emphasis on the momentum range over which PID is necessary. Possible solutions are discussed, including classical RICH counters, time-of-flight systems, and d$E$/d$x$ and cluster counting. Attention is paid to the impact on the global detector design that including PID capabilities would imply.



قيم البحث

اقرأ أيضاً

This note gives a conceptual description and illustration of the CLD detector, based on the work for a detector at CLIC. CLD is one of the detectors envisaged at a future 100 km $e^+e^-$ circular collider (FCC-ee). The note also contains a brief desc ription of the simulation and reconstruction tools used in the linear collider community, which have been adapted for physics and performance studies of CLD. The detector performance is described in terms of single particles, particles in jets, jet energy and angular resolution, and flavour tagging. The impact of beam-related backgrounds (incoherent $e^+e^-$ pairs and synchrotron radiation photons) on the performance is also discussed.
JUNO is a multi-purpose neutrino experiment currently under construction in Jiangmen, China. It is primary aiming to determine the neutrino mass ordering. Moreover, its 20,kt target mass makes it an ideal detector to study neutrinos from various sour ces, including nuclear reactors, the Earth and its atmosphere, the Sun, and even supernovae. Due to the small cross section of neutrino interactions, the event rate of neutrino experiments is limited. In order to maximize the signal-to-noise ratio, it is extremely important to control the background levels. In this paper we discuss the potential of particle identification in JUNO, its underlying principles and possible areas of application in the experiment. While the presented concepts can be transferred to any large liquid scintillator detector, our methods are evaluated specifically for JUNO and the results are mainly driven by its high optical photon yield of 1,200 photo electrons per MeV of deposited energy. In order to investigate the potential of event discrimination, several event pairings are analysed, i.e. $alpha/beta$, $p/beta$, $e^+/e^-$, and $e^-/gamma$. We compare the discrimination performance of advanced analytical techniques based on neural networks and on the topological event reconstruction keeping the standard Gatti filter as a reference. We use the Monte Carlo samples generated in the physically motivated energy intervals. We study the dependence of our cuts on energy, radial position, PMT time resolution, and dark noise. The results show an excellent performance for $alpha/beta$ and $p/beta$ with the Gatti method and the neural network. Furthermore, $e^+/e^-$ and $e^-/gamma$ can partly be distinguished by means of neural network and topological reconstruction on a statistical basis. Especially in the latter case, the topological method proved very successful.
122 - A. Blondel , J. Gluza , S. Jadach 2019
The Future Circular Collider (FCC) at CERN, a proposed 100-km circular facility with several colliders in succession, culminates with a 100 TeV proton-proton collider. It offers a vast new domain of exploration in particle physics, with orders of mag nitude advances in terms of Precision, Sensitivity and Energy. The implementation plan foresees, as a first step, an Electroweak Factory electron-positron collider. This high luminosity facility, operating between 90 and 365 GeV centre-of-mass energy, will study the heavy particles of the Standard Model, Z, W, Higgs, and top with unprecedented accuracy. The Electroweak Factory $e^+e^-$ collider constitutes a real challenge to the theory and to precision calculations, triggering the need for the development of new mathematical methods and software tools. A first workshop in 2018 had focused on the first FCC-ee stage, the Tera-Z, and confronted the theoretical status of precision Standard Model calculations on the Z-boson resonance to the experimental demands. The second workshop in January 2019, which is reported here, extended the scope to the next stages, with the production of W-bosons (FCC-ee-W), the Higgs boson (FCC-ee-H) and top quarks (FCC-ee-tt). In particular, the theoretical precision in the determination of the crucial input parameters, alpha_QED, alpha_QCD, M_W, m_t at the level of FCC-ee requirements is thoroughly discussed. The requirements on Standard Model theory calculations were spelled out, so as to meet the demanding accuracy of the FCC-ee experimental potential. The discussion of innovative methods and tools for multi-loop calculations was deepened. Furthermore, phenomenological analyses beyond the Standard Model were discussed, in particular the effective theory approaches. The reports of 2018 and 2019 serve as white papers of the workshop results and subsequent developments.
122 - Matthew Barrett 2013
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.
With centre-of-mass energies covering the Z pole, the WW threshold, the HZ production, and the top-pair threshold, the FCC-ee offers unprecedented possibilities to measure the properties of the four heaviest particles of the Standard Model (the Higgs , Z, and W bosons, and the top quark), and also those of the b and c quarks and of the $tau$ lepton. At these moderate energies, the role of the calorimeters is to complement the tracking systems in an optimal (a.k.a. particle-flow) event reconstruction. In this context, precision measurements and searches for new particles can fully profit from the improved electromagnetic and hadronic object reconstruction offered by new technologies, finer transverse and longitudinal segmentation, timing capabilities, multi-signal readout, modern computing techniques and algorithms. The corresponding requirements arise in particular from the resolution on reconstructed hadronic masses, energies, and momenta, e.g., of H, W, Z, needed to reach the FCC-ee promised precision. Extreme electromagnetic energy resolutions are also instrumental for $pi^0$ identification, $tau$ exclusive decay reconstruction, and physics sensitivity to processes accessible via radiative return. We present state of the art, challenges and future developments on some of the currently most promising technologies: high-granularity silicon and scintillator readout, dual readout, noble-liquid and crystal calorimeters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا