ترغب بنشر مسار تعليمي؟ اضغط هنا

Particle Identification at MeV Energies in JUNO

61   0   0.0 ( 0 )
 نشر من قبل Yu Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

JUNO is a multi-purpose neutrino experiment currently under construction in Jiangmen, China. It is primary aiming to determine the neutrino mass ordering. Moreover, its 20,kt target mass makes it an ideal detector to study neutrinos from various sources, including nuclear reactors, the Earth and its atmosphere, the Sun, and even supernovae. Due to the small cross section of neutrino interactions, the event rate of neutrino experiments is limited. In order to maximize the signal-to-noise ratio, it is extremely important to control the background levels. In this paper we discuss the potential of particle identification in JUNO, its underlying principles and possible areas of application in the experiment. While the presented concepts can be transferred to any large liquid scintillator detector, our methods are evaluated specifically for JUNO and the results are mainly driven by its high optical photon yield of 1,200 photo electrons per MeV of deposited energy. In order to investigate the potential of event discrimination, several event pairings are analysed, i.e. $alpha/beta$, $p/beta$, $e^+/e^-$, and $e^-/gamma$. We compare the discrimination performance of advanced analytical techniques based on neural networks and on the topological event reconstruction keeping the standard Gatti filter as a reference. We use the Monte Carlo samples generated in the physically motivated energy intervals. We study the dependence of our cuts on energy, radial position, PMT time resolution, and dark noise. The results show an excellent performance for $alpha/beta$ and $p/beta$ with the Gatti method and the neural network. Furthermore, $e^+/e^-$ and $e^-/gamma$ can partly be distinguished by means of neural network and topological reconstruction on a statistical basis. Especially in the latter case, the topological method proved very successful.



قيم البحث

اقرأ أيضاً

118 - Guy Wilkinson 2021
Equipping an experiment at FCC-ee with particle identification (PID) capabilities, in particular the ability to distinguish between hadron species, would bring great benefits to the physics programme. Good PID is essential for precise studies in quar k flavour physics, and is also a great asset for many measurements in tau, top and Higgs physics. The requirements placed by flavour physics and these other applications are surveyed, with an emphasis on the momentum range over which PID is necessary. Possible solutions are discussed, including classical RICH counters, time-of-flight systems, and d$E$/d$x$ and cluster counting. Attention is paid to the impact on the global detector design that including PID capabilities would imply.
122 - Matthew Barrett 2013
The Belle-II experiment and superKEKB accelerator will form a next generation B-factory at KEK, capable of running at an instantaneous luminosity 40 times higher than the Belle detector and KEKB. This will allow for the elucidation of many facets of the Standard Model by performing precision measurements of its parameters, and provide sensitivity to many rare decays that are currently inaccessible. This will require major upgrades to both the accelerator and detector subsystems. The imaging Time-of-propagation (iTOP) detector will be a new subdetector of Belle-II that will perform an integral role in Particle identification (PID). It will comprise 16 modules between the tracking detectors and calorimeter; each module consisting of a quartz radiator, approximately 2.5m in length, instrumented with an array of 32 micro-channel plate photodetectors (MCP-PMTs). The passage of charged particles through the quartz will produce a cone of Cherenkov photons that will propagate along the length of the quartz, and be detected by the MCP-PMTs. The excellent spatial, and timing resolution (of 50 picoseconds) of the iTOP system will provide superior particle identification capabilities, particularly allowing for enhanced discrimination between pions and kaons that will be essential for many of the key measurements to performed. The status of the construction of the iTOP subdetector, and performance studies of prototypes at beam tests will be presented, together with prospects for physics measurements that will utilise the PID capabilities of the iTOP system.
Liquid xenon (LXe) is employed in a number of current and future detectors for rare event searches. We use the EXO-200 experimental data to measure the absolute scintillation and ionization yields generated by $gamma$ interactions from $^{228}$Th (26 15~keV), $^{226}$Ra (1764~keV) and $^{60}$Co (1332~keV and 1173~keV) calibration sources, over a range of electric fields. The $W$-value that defines the recombination-independent energy scale is measured to be $11.5~pm~0.5$~(syst.)~$pm~0.1$~(stat.) eV. These data are also used to measure the recombination fluctuations in the number of electrons and photons produced by the calibration sources at the MeV-scale, which deviate from extrapolations of lower-energy data. Additionally, a semi-empirical model for the energy resolution of the detector is developed, which is used to constrain the recombination efficiency, i.e., the fraction of recombined electrons that result in the emission of a detectable photon. Detailed measurements of the absolute charge and light yields for MeV-scale electron recoils are important for predicting the performance of future neutrinoless double beta decay detectors.
The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a Toolkit for Multivariate Data Analysis (TMVA) based lepton identification (LICH) h as been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1%/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/$mumu$H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.
The current event display system in the offline software of Jiangmen Underground Neutrino Observatory Experiment(JUNO) is based on the ROOT EVE package. We use Unity, a renowned game engine, to improve its performance and make it available on differe nt platforms. Compared to ROOT, Unity provides a more vivid demonstration for high energy physics experiments and can be ported to different platforms easily. We build a tool for event display in JUNO with Unity. It provides us an intuitive way to observe the detector model, the particle trajectories and the hit distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا