ترغب بنشر مسار تعليمي؟ اضغط هنا

A Unified Cognitive Learning Framework for Adapting to Dynamic Environment and Tasks

123   0   0.0 ( 0 )
 نشر من قبل Fuhui Zhou
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Many machine learning frameworks have been proposed and used in wireless communications for realizing diverse goals. However, their incapability of adapting to the dynamic wireless environment and tasks and of self-learning limit their extensive applications and achievable performance. Inspired by the great flexibility and adaptation of primate behaviors due to the brain cognitive mechanism, a unified cognitive learning (CL) framework is proposed for the dynamic wireless environment and tasks. The mathematical framework for our proposed CL is established. Using the public and authoritative dataset, we demonstrate that our proposed CL framework has three advantages, namely, the capability of adapting to the dynamic environment and tasks, the self-learning capability and the capability of good money driving out bad money by taking modulation recognition as an example. The proposed CL framework can enrich the current learning frameworks and widen the applications.



قيم البحث

اقرأ أيضاً

The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps change their size continuously, being adaptive with connectionist cells inside; mind-maps process data input incrementally and offer lots of possibilities to interact with the user through an appropriate communication interface. With respect to a cognitive motivated situation like a conversation between partners, mind-maps become interesting as they are able to process stimulating signals whenever they occur. If these signals are close to an own understanding of the world, then the conversational partner becomes automatically more trustful than if the signals do not or less match the own knowledge scheme. In this (position) paper, we therefore motivate explorative mind-maps as a cognitive engine and propose these as a decision support engine to foster trust.
With AlphaGo defeats top human players, reinforcement learning(RL) algorithms have gradually become the code-base of building stronger artificial intelligence(AI). The RL algorithm design firstly needs to adapt to the specific environment, so the des igned environment guides the rapid and profound development of RL algorithms. However, the existing environments, which can be divided into real world games and customized toy environments, have obvious shortcomings. For real world games, it is designed for human entertainment, and too much difficult for most of RL researchers. For customized toy environments, there is no widely accepted unified evaluation standard for all RL algorithms. Therefore, we introduce the first virtual user-friendly environment framework for RL. In this framework, the environment can be easily configured to realize all kinds of RL tasks in the mainstream research. Then all the mainstream state-of-the-art(SOTA) RL algorithms can be conveniently evaluated and compared. Therefore, our contributions mainly includes the following aspects: 1.single configured environment for all classification of SOTA RL algorithms; 2.combined environment of more than one classification RL algorithms; 3.the evaluation standard for all kinds of RL algorithms. With all these efforts, a possibility for breeding an AI with capability of general competency in a variety of tasks is provided, and maybe it will open up a new chapter for AI.
In the status quo, dementia is yet to be cured. Precise diagnosis prior to the onset of the symptoms can prevent the rapid progression of the emerging cognitive impairment. Recent progress has shown that Electroencephalography (EEG) is the promising and cost-effective test to facilitate the detection of neurocognitive disorders. However, most of the existing works have been using only resting-state EEG. The efficiencies of EEG signals from various cognitive tasks, for dementia classification, have yet to be thoroughly investigated. In this study, we designed four cognitive tasks that engage different cognitive performances: attention, working memory, and executive function. We investigated these tasks by using statistical analysis on both time and frequency domains of EEG signals from three classes of human subjects: Dementia (DEM), Mild Cognitive Impairment (MCI), and Normal Control (NC). We also further evaluated the classification performances of two features extraction methods: Principal Component Analysis (PCA) and Filter Bank Common Spatial Pattern (FBCSP). We found that the working memory related tasks yielded good performances for dementia recognition in both cases using PCA and FBCSP. Moreover, FBCSP with features combination from four tasks revealed the best sensitivity of 0.87 and the specificity of 0.80. To our best knowledge, this is the first work that concurrently investigated several cognitive tasks for dementia recognition using both statistical analysis and classification scores. Our results yielded essential information to design and aid in conducting further experimental tasks to early diagnose dementia patients.
76 - Junyi Li , Tianyi Tang , Gaole He 2021
In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 te xt generation models on 9 benchmark datasets, covering the categories of VAE, GAN, and pretrained language models. Meanwhile, our library maintains sufficient modularity and extensibility by properly decomposing the model architecture, inference, and learning process into highly reusable modules, which allows users to easily incorporate new models into our framework. The above features make TextBox specially suitable for researchers and practitioners to quickly reproduce baseline models and develop new models. TextBox is implemented based on PyTorch, and released under Apache License 2.0 at https://github.com/RUCAIBox/TextBox.
This work presents a method for adapting a single, fixed deep neural network to multiple tasks without affecting performance on already learned tasks. By building upon ideas from network quantization and pruning, we learn binary masks that piggyback on an existing network, or are applied to unmodified weights of that network to provide good performance on a new task. These masks are learned in an end-to-end differentiable fashion, and incur a low overhead of 1 bit per network parameter, per task. Even though the underlying network is fixed, the ability to mask individual weights allows for the learning of a large number of filters. We show performance comparable to dedicated fine-tuned networks for a variety of classification tasks, including those with large domain shifts from the initial task (ImageNet), and a variety of network architectures. Unlike prior work, we do not suffer from catastrophic forgetting or competition between tasks, and our performance is agnostic to task ordering. Code available at https://github.com/arunmallya/piggyback.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا