ﻻ يوجد ملخص باللغة العربية
Many machine learning frameworks have been proposed and used in wireless communications for realizing diverse goals. However, their incapability of adapting to the dynamic wireless environment and tasks and of self-learning limit their extensive applications and achievable performance. Inspired by the great flexibility and adaptation of primate behaviors due to the brain cognitive mechanism, a unified cognitive learning (CL) framework is proposed for the dynamic wireless environment and tasks. The mathematical framework for our proposed CL is established. Using the public and authoritative dataset, we demonstrate that our proposed CL framework has three advantages, namely, the capability of adapting to the dynamic environment and tasks, the self-learning capability and the capability of good money driving out bad money by taking modulation recognition as an example. The proposed CL framework can enrich the current learning frameworks and widen the applications.
The explorative mind-map is a dynamic framework, that emerges automatically from the input, it gets. It is unlike a verificative modeling system where existing (human) thoughts are placed and connected together. In this regard, explorative mind-maps
With AlphaGo defeats top human players, reinforcement learning(RL) algorithms have gradually become the code-base of building stronger artificial intelligence(AI). The RL algorithm design firstly needs to adapt to the specific environment, so the des
In the status quo, dementia is yet to be cured. Precise diagnosis prior to the onset of the symptoms can prevent the rapid progression of the emerging cognitive impairment. Recent progress has shown that Electroencephalography (EEG) is the promising
In this paper, we release an open-source library, called TextBox, to provide a unified, modularized, and extensible text generation framework. TextBox aims to support a broad set of text generation tasks and models. In our library, we implement 21 te
This work presents a method for adapting a single, fixed deep neural network to multiple tasks without affecting performance on already learned tasks. By building upon ideas from network quantization and pruning, we learn binary masks that piggyback