ﻻ يوجد ملخص باللغة العربية
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum (BICs) was recently unveiled. When nonlinearity is added to a HOTI system, a number of fundamentally important questions arise. For example, how does nonlinearity couple higher-order topological BICs with the rest of the system, including continuum states? In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here, we demonstrate the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We observe topological corner states which, serendipitously, are also BICs in a laser-written second-order topological lattice. We further demonstrate nonlinear coupling with edge states at a low nonlinearity, transitioning to solitons at a high nonlinearity. Theoretically, we calculate the analog of the Zak phase in the nonlinear regime, illustrating that a topological BIC can be actively tuned by both focusing and defocusing nonlinearities. Our studies are applicable to other nonlinear HOTI systems, with promising applications in emerging topology-driven devices.
We show that lattices with higher-order topology can support corner-localized bound states in the continuum (BICs). We propose a method for the direct identification of BICs in condensed matter settings and use it to demonstrate the existence of BICs
Higher-order topological insulators are a recently discovered class of materials that can possess zero-dimensional localized states regardless of the dimension of the lattice. Here, we experimentally demonstrate that the topological corner-localized
Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems
Recently, high-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of
Higher-order topological insulators (HOTI) are a novel topological phase beyond the framework of the conventional bulk-boundary correspondence. In these peculiar systems, the topologically nontrivial boundary modes are characterized by a co-dimension