ﻻ يوجد ملخص باللغة العربية
Recently, high-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of HOTIs, very recent works have explored the square-root HOTIs, where the topological nontrivial nature of bulk bands stems from the square of the Hamiltonian. In this paper, we experimentally demonstrate 2D square-root HOTIs in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. Edge and corner states are clearly observed through visible light spectra. The dynamical evolutions of topological boundary states are experimentally demonstrated, which further verify the existence of in-gap edge and corner states. The robustness of these edge and corner states is revealed by introducing defects and disorders into the bulk structures. Our studies provide an extended platform for realizing light manipulation and stable photonic devices.
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound
We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.
Square-root topological insulators are recently-proposed intriguing topological insulators, where the topologically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this paper, we propose that higher-order
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. H
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycom