ﻻ يوجد ملخص باللغة العربية
Phase-field modeling -- a continuous approach to discontinuities -- is gaining popularity for simulating rock fractures due to its ability to handle complex, discontinuous geometry without an explicit surface tracking algorithm. None of the existing phase-field models, however, incorporates the impact of surface roughness on the mechanical response of fractures -- such as elastic deformability and shear-induced dilation -- despite the importance of this behavior for subsurface systems. To fill this gap, here we introduce the first framework for phase-field modeling of rough rock fractures. The framework transforms a displacement-jump-based discrete constitutive model for discontinuities into a strain-based continuous model, and then casts it into a phase-field formulation for frictional interfaces. We illustrate the framework by constructing a particular phase-field form employing a rock joint model originally formulated for discrete modeling. The results obtained by the new formulation show excellent agreement with those of a well-established discrete method for a variety of problems ranging from shearing of a single discontinuity to compression of fractured rocks. Consequently, our phase-field framework provides an unprecedented bridge between a discrete constitutive model for rough discontinuities -- common in rock mechanics -- and the continuous finite element method -- standard in computational mechanics -- without any algorithm to explicitly represent discontinuity geometry.
We consider an alternative way of obtaining the effective elastic properties of a cracked medium. Similarly, to the popular linear-slip model, we assume flat, parallel fractures, and long wavelengths. However, we do not treat fractures as weakness pl
Field-scale properties of fractured rocks play crucial role in many subsurface applications, yet methodologies for identification of the statistical parameters of a discrete fracture network (DFN) are scarce. We present an inversion technique to infe
This article provides an overview of the current state of digital rock technology, with emphasis on industrial applications. We show how imaging and image analysis can be applied for rock typing and modeling of end-point saturations. Different method
Hydraulic tension fractures were produced in porous limestones using a specially designed hydraulic cell. The 3D geometry of the samples was imaged using X-ray computed microtomography before and after fracturation. Using these data, it was possible
Modeling and forecasting the solar wind-driven global magnetic field perturbations is an open challenge. Current approaches depend on simulations of computationally demanding models like the Magnetohydrodynamics (MHD) model or sampling spatially and