ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Earth Magnetic Field Modeling and Forecasting with Spherical Harmonics Decomposition

93   0   0.0 ( 0 )
 نشر من قبل Panagiotis Tigas
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling and forecasting the solar wind-driven global magnetic field perturbations is an open challenge. Current approaches depend on simulations of computationally demanding models like the Magnetohydrodynamics (MHD) model or sampling spatially and temporally through sparse ground-based stations (SuperMAG). In this paper, we develop a Deep Learning model that forecasts in Spherical Harmonics space 2, replacing reliance on MHD models and providing global coverage at one minute cadence, improving over the current state-of-the-art which relies on feature engineering. We evaluate the performance in SuperMAG dataset (improved by 14.53%) and MHD simulations (improved by 24.35%). Additionally, we evaluate the extrapolation performance of the spherical harmonics reconstruction based on sparse ground-based stations (SuperMAG), showing that spherical harmonics can reliably reconstruct the global magnetic field as evaluated on MHD simulation.



قيم البحث

اقرأ أيضاً

Potential magnetic field solutions can be obtained based on the synoptic magnetograms of the Sun. Traditionally, a spherical harmonics decomposition of the magnetogram is used to construct the current and divergence free magnetic field solution. This method works reasonably well when the order of spherical harmonics is limited to be small relative to the resolution of the magnetogram, although some artifacts, such as ringing, can arise around sharp features. When the number of spherical harmonics is increased, however, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. We discuss here two approaches that can mitigate or completely avoid these problems: i) Remeshing the magnetogram onto a grid with uniform resolution in latitude, and limiting the highest order of the spherical harmonics to the anti-alias limit; ii) Using an iterative finite difference algorithm to solve for the potential field. The naive and the improved numerical solutions are compared for actual magnetograms, and the differences are found to be rather dramatic. We made our new Finite Difference Iterative Potential-field Solver (FDIPS) a publically available code, so that other researchers can also use it as an alternative to the spherical harmonics approach.
Spherical Harmonics, $Y_ell^m(theta,phi)$, are derived and presented (in a Table) for half-odd-integer values of $ell$ and $m$. These functions are eigenfunctions of $L^2$ and $L_z$ written as differential operators in the spherical-polar angles, $th eta$ and $phi$. The Fermion Spherical Harmonics are a new, scalar and angular-coordinate-dependent representation of fermion spin angular momentum. They have $4pi$ symmetry in the angle $phi$, and hence are not single-valued functions on the Euclidean unit sphere; they are double-valued functions on the sphere, or alternatively are interpreted as having a double-sphere as their domain.
This paper is devoted to study discrete and continuous bases for spaces supporting representations of SO(3) and SO(3,2) where the spherical harmonics are involved. We show how discrete and continuous bases coexist on appropriate choices of rigged Hil bert spaces. We prove the continuity of relevant operators and the operators in the algebras spanned by them using appropriate topologies on our spaces. Finally, we discuss the properties of the functionals that form the continuous basis.
The derivation of spherical harmonics is the same in nearly every quantum mechanics textbook and classroom. It is found to be difficult to follow, hard to understand, and challenging to reproduce by most students. In this work, we show how one can de termine spherical harmonics in a more natural way based on operators and a powerful identity called the exponential disentangling operator identity (known in quantum optics, but little used elsewhere). This new strategy follows naturally after one has introduced Dirac notation, computed the angular momentum algebra, and determined the action of the angular momentum raising and lowering operators on the simultaneous angular momentum eigenstates (under $hat L^2$ and $hat L_z$).
Phase-field modeling -- a continuous approach to discontinuities -- is gaining popularity for simulating rock fractures due to its ability to handle complex, discontinuous geometry without an explicit surface tracking algorithm. None of the existing phase-field models, however, incorporates the impact of surface roughness on the mechanical response of fractures -- such as elastic deformability and shear-induced dilation -- despite the importance of this behavior for subsurface systems. To fill this gap, here we introduce the first framework for phase-field modeling of rough rock fractures. The framework transforms a displacement-jump-based discrete constitutive model for discontinuities into a strain-based continuous model, and then casts it into a phase-field formulation for frictional interfaces. We illustrate the framework by constructing a particular phase-field form employing a rock joint model originally formulated for discrete modeling. The results obtained by the new formulation show excellent agreement with those of a well-established discrete method for a variety of problems ranging from shearing of a single discontinuity to compression of fractured rocks. Consequently, our phase-field framework provides an unprecedented bridge between a discrete constitutive model for rough discontinuities -- common in rock mechanics -- and the continuous finite element method -- standard in computational mechanics -- without any algorithm to explicitly represent discontinuity geometry.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا